线性求所有数模p的乘法逆元
推理:
假如当前计算的是x在%p意义下的逆元,设$p=kx+y$,则
$\Large kx+y\equiv 0(mod\ p)$
两边同时乘上$x^{-1}y^{-1}$(这里代表逆元)
则方程变为$\Large k*y^{-1}+x^{-1}\equiv 0(mod\ p)$
化简得$\Large x^{-1}\equiv -k*y^{-1}(mod\ p)$
$\Large x^{-1}\equiv -\biggl\lfloor\frac{p}{x}\biggr\rfloor *(p\ mod\ x)^{-1}(mod\ p)$
结果为
$\Large x^{-1}\equiv (p-\biggl\lfloor\frac{p}{x}\biggr\rfloor )*(p\ mod\ x)^{-1}(mod\ p)$
除了1,p mod x一定小于x,它的逆元已经算过,所以可以线性求出逆元
void Inverse(int p,int a[],int n){//线性求<=n的数%p意义下的逆元
a[]=;
for(int i=;i<=n;i++){
a[i]=1ll*(p-p/i)*a[p%i]%p;
}
}
线性求所有数模p的乘法逆元的更多相关文章
- Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)
Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...
- 【模板】求1~n的整数的乘法逆元
洛谷3811 先用n!p-2求出n!的乘法逆元 因为有(i-1)!-1=i!-1*i (mod p),于是我们可以O(n)求出i!-1 再用i!-1*(i-1)!=i-1 (mod p)即是答案 #i ...
- A. On The Way to Lucky Plaza 概率 乘法逆元
A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard i ...
- Light OJ 1067 Combinations (乘法逆元)
Description Given n different objects, you want to take k of them. How many ways to can do it? For e ...
- hdu_1452_Happy 2004 (乘法逆元
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- 乘法逆元__C++
在开始之前我们先介绍3个定理: 1.乘法逆元(在维基百科中也叫倒数,当然是 mod p后的,其实就是倒数不是吗?): 如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
- HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)
Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...
- 简记乘法逆元(费马小定理+扩展Euclid)
乘法逆元 什么是乘法逆元? 若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) . 称\(x\) 是\( ...
随机推荐
- 「APIO 2019」桥梁
题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...
- unity3d入门 Demo 学习记录
闲来学习一下 unity3d 的Demo,记录如下. 官方 Demo,名字为 Roll-A-Ball,如图 场景比较简单,包含地面.玩家精灵.主摄像机.墙壁.可拾取的方块.分数为示 text.平行光源 ...
- LINQ用法总结
之前一直用sql和拉姆达表达式,一直感觉linq不好用.用熟练了感觉期功能好强大,查询性能例外考究.这里讲讲基本用法. 内联查询: var list2 = (from a in db.Role whe ...
- T2963 贪吃蛇【BFS,四进制状压,A*】
Online Judge:未知 Label:BFS,四进制状压,暴力,A*,哈希,玄学. 题目描述 给定一个n*m的地图和蛇的初始位置,地图中有些位置有石头,蛇不能经过.当然蛇也不能爬到地图之外. 每 ...
- 记录openSUSE 源码安装node.js
openSUSE版本: 42.2 目标:安装好 Node.js v6.10.3 在终端中可以使用 "su" 命令,切换到root用户. 1. 安装 gcc,gcc-c++ zypp ...
- pure-Python PDF library
# -*- coding: utf-8 -*- # # vim: sw=4:expandtab:foldmethod=marker # # Copyright (c) 2006, Mathieu Fe ...
- 在python3中的编码
在python3中的编码 #_author:Administrator#date:2019/10/29import sysprint(sys.getdefaultencoding())#utf-8 打 ...
- limit方法也是模型类的连贯操作方法之一
limit方法也是模型类的连贯操作方法之一,主要用于指定查询和操作的数量,特别在分页查询的时候使用较多.ThinkPHP的limit方法可以兼容所有的数据库驱动类的. 限制结果数量 例如获取满足要求的 ...
- LUOGU P4027 [NOI2007]货币兑换 (斜率优化+CDQ分治)
传送门 解题思路 题目里有两句提示一定要看清楚,要不全买要不全卖,所以dp方程就比较好列,f[i]=max(f[j]*rate[j]*a[i])/(rate[j]*a[j]+b[j])+(f[j]*b ...
- JS高级特性
一.JavaScript的同源策略 参考链接:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Same_origin_policy_fo ...