@description@

有n个城市,每个城市有个权值wi,任意两个城市i,j之间的道路数有wi∗wj条。

对于每种生成树,设每个点的度数为di,其权值定义为∏di。

问所有无根生成树的权值和。答案对1e9+7取模。

Class:

ConnectedStates

Method:

getSum

Parameters:

int[]

Returns:

int

Constraints

n <= 2000

Examples

0)

{"3, 10"}

Returns: 30

1)

{"2, 2, 2"}

Returns: 96

2)

{"1, 1, 1, 1"}

Returns: 60

@solution@

考虑如果固定了生成树的形态,对应的方案应该是所有树边条数的乘积。

稍微变一变其实就是 \(\prod_{i=1}^{n}w_{i}^{d_i}\),这样就只跟点的度数有关了。

根据我们的 prufer 定理,最终答案为:

\[ans = (n-2)!*\sum_{(\sum_{i=1}^{n}d_i) = 2*n-2}(\prod_{i=1}^{n}\frac{w_{i}^{d_i}}{(d_i-1)!}*d_i)
\]

如果将 i 有关的项整理到一起然后 fft 一下的时间复杂度是 O(n^2*logn),但是我们可以做到更优。

优化的思路来源在于多项式的幂公式,即:

\[(a_1 + a_2 + ... + a_n)^k = k!*\sum_{(\sum_{i=1}^{n}b_i) = k}(\prod_{i=1}^{n}\frac{a_{i}^{b_i}}{{b_i}!})
\]

注意到下面这个公式和上面的答案表达式其实是很相像的,我们考虑进一步地变形:

令 \(a_i = d_i - 1\),得到:

\[ans = (\prod_{i=1}^{n}w_i)*(n-2)!*\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}*(a_i+1))
\]

基本就是一样了,但还有一个 \(\prod_{i=1}^{n}(a_i + 1)\) 阻碍我们。

考虑将它拆开,依次考虑每一个单项式 \(a_{p_1}*a_{p_2}*...*a_{p_m} = \prod_{j=1}^{m}a_{p_j}\) 的贡献,其中 \(1 \le p_1 < p_2 < ... < p_m \le n\)。它的贡献为:

\[\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}* \prod_{j=1}^{m}a_{p_j})
\]

考虑将这些 a 乘入阶乘中去,令得到的新的阶乘分别为 \(c_1, c_2, ... c_n\),再变一下形得到:

\[\prod_{j=1}^{m}w_{p_j}*\sum_{(\sum_{i=1}^{n}c_i) = n-2-m}(\prod_{i=1}^{n}\frac{w_{i}^{c_i}}{c_i!}) = \prod_{j=1}^{m}w_{p_j}*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

终于化成了我们想要的东西。

再将上面那个套入我们的答案表达式中,即可得到:

\[ans = \sum_{m=0}^{n-2}(\sum_{1 \le p_1 < p_2 < ... < p_m \le n}\prod_{j=1}^{m}w_{p_j})*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

中间那个看似很鬼畜的式子用 dp 处理一下就好啦。时间复杂度 O(n^2)。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 2000;
const int MOD = int(1E9) + 7;
class ConnectedStates{
public:
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int dp[MAXN + 5], w[MAXN + 5], pro, n;
int fct[MAXN + 5], ifct[MAXN + 5], pw[MAXN + 5];
void get_ready() {
dp[0] = 1;
for(int i=1;i<=n;i++)
for(int j=n;j>=1;j--)
dp[j] = (dp[j] + 1LL*dp[j-1]*w[i]%MOD)%MOD;
pw[0] = 1, pw[1] = 0, pro = 1;
for(int i=1;i<=n;i++)
pw[1] = (pw[1] + w[i])%MOD, pro = 1LL*pro*w[i]%MOD;
for(int i=2;i<=n;i++)
pw[i] = 1LL*pw[i-1]*pw[1]%MOD;
fct[0] = 1;
for(int i=1;i<=n;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
ifct[n] = pow_mod(fct[n], MOD - 2);
for(int i=n-1;i>=0;i--)
ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
}
int getSum(vector<int>vec) {
n = vec.size();
for(int i=1;i<=n;i++)
w[i] = vec[i-1];
get_ready();
int ret = 0;
for(int i=0;i<=n-2;i++)
ret = (ret + 1LL*dp[i]*pw[n-2-i]%MOD*ifct[n-2-i]%MOD)%MOD;
return 1LL*ret*fct[n-2]%MOD*pro%MOD;
}
};

@details@

当我看到这个做法的瞬间:woc 这是什么神仙操作。

果真人类智慧啊。

但我觉得这个数据范围好像fft可以过?

@topcoder - SRM697D1L3@ ConnectedStates的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. 公共钥匙盒 ccf

    试题编号: 201709-2 试题名称: 公共钥匙盒 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 有一个学校的老师共用N个教室,按照规定,所有的钥匙都必须放在公共钥匙盒里, ...

  2. day36 06-Hibernate抓取策略:set集合上的抓取策略

    你在做查询的时候它可以帮你关联出它的一些相应的关联对象.那么它关联这个对象的时候是在什么时候发送的这些语句以及它是如何把这些数据拿出来的? 知道延迟检索是怎么回事了,而且它也能够产生这个代理对象.当你 ...

  3. HDU5583 Kingdom of Black and White

    Kingdom of Black and White Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Ja ...

  4. 第八章—BOM(一)

    ECMAscript是JS的核心,而要在web上使用JS,那么BOM无疑是真正的核心.BOM叫浏览器对象模型,它提供了许多对象,用于访问浏览器的功能. BOM的核心对象是window,它表示浏览器的一 ...

  5. ACdream 1099求第k大

    题目链接 瑶瑶的第K大 Time Limit: 10000/5000MS (Java/Others)Memory Limit: 512000/256000KB (Java/Others) Submit ...

  6. KMLLayer

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. pytest 用 @pytest.mark.usefixtures("fixtureName")装饰类,可以让执行每个case前,都执行一遍指定的fixture

    conftest.py import pytest import uuid @pytest.fixture() def declass(): print("declass:"+st ...

  8. C++程序设计教材目录思维导图(增C++Primer)

    正在做C++思维导图,大工程,比较艰苦. 先做了三个C++教材目录的思维导图.C++教材不等于C++,这个容易些.看思维导图,整理所学知识,这个可以会. 给出三张图,对应三种教材: 谭浩强. C++程 ...

  9. 关于spring中<util:/>的配置

    解决redis设置缓存时间找到的帖子,我这个初学者需要学习的还是很多的. 原文地址:http://www.doc100.net/bugs/t/216322/index.html 探索<util/ ...

  10. 【JZOJ4964】【GDKOI2017模拟1.21】Rhyme

    hafy 由于多次交换邮票没有满足所有人的需求,小Z被赶出了集邮部.无处可去的小Z决定加入音乐部,为了让音乐部的人注意到自己的才华,小Z想写一首曲子.为了让自己的曲子更好听,小Z找到了一些好听曲子作为 ...