@topcoder - SRM697D1L3@ ConnectedStates
@description@
有n个城市,每个城市有个权值wi,任意两个城市i,j之间的道路数有wi∗wj条。
对于每种生成树,设每个点的度数为di,其权值定义为∏di。
问所有无根生成树的权值和。答案对1e9+7取模。
Class:
ConnectedStates
Method:
getSum
Parameters:
int[]
Returns:
int
Constraints
n <= 2000
Examples
0)
{"3, 10"}
Returns: 30
1)
{"2, 2, 2"}
Returns: 96
2)
{"1, 1, 1, 1"}
Returns: 60
@solution@
考虑如果固定了生成树的形态,对应的方案应该是所有树边条数的乘积。
稍微变一变其实就是 \(\prod_{i=1}^{n}w_{i}^{d_i}\),这样就只跟点的度数有关了。
根据我们的 prufer 定理,最终答案为:
\]
如果将 i 有关的项整理到一起然后 fft 一下的时间复杂度是 O(n^2*logn),但是我们可以做到更优。
优化的思路来源在于多项式的幂公式,即:
\]
注意到下面这个公式和上面的答案表达式其实是很相像的,我们考虑进一步地变形:
令 \(a_i = d_i - 1\),得到:
\]
基本就是一样了,但还有一个 \(\prod_{i=1}^{n}(a_i + 1)\) 阻碍我们。
考虑将它拆开,依次考虑每一个单项式 \(a_{p_1}*a_{p_2}*...*a_{p_m} = \prod_{j=1}^{m}a_{p_j}\) 的贡献,其中 \(1 \le p_1 < p_2 < ... < p_m \le n\)。它的贡献为:
\]
考虑将这些 a 乘入阶乘中去,令得到的新的阶乘分别为 \(c_1, c_2, ... c_n\),再变一下形得到:
\]
终于化成了我们想要的东西。
再将上面那个套入我们的答案表达式中,即可得到:
\]
中间那个看似很鬼畜的式子用 dp 处理一下就好啦。时间复杂度 O(n^2)。
@accepted code@
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 2000;
const int MOD = int(1E9) + 7;
class ConnectedStates{
public:
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int dp[MAXN + 5], w[MAXN + 5], pro, n;
int fct[MAXN + 5], ifct[MAXN + 5], pw[MAXN + 5];
void get_ready() {
dp[0] = 1;
for(int i=1;i<=n;i++)
for(int j=n;j>=1;j--)
dp[j] = (dp[j] + 1LL*dp[j-1]*w[i]%MOD)%MOD;
pw[0] = 1, pw[1] = 0, pro = 1;
for(int i=1;i<=n;i++)
pw[1] = (pw[1] + w[i])%MOD, pro = 1LL*pro*w[i]%MOD;
for(int i=2;i<=n;i++)
pw[i] = 1LL*pw[i-1]*pw[1]%MOD;
fct[0] = 1;
for(int i=1;i<=n;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
ifct[n] = pow_mod(fct[n], MOD - 2);
for(int i=n-1;i>=0;i--)
ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
}
int getSum(vector<int>vec) {
n = vec.size();
for(int i=1;i<=n;i++)
w[i] = vec[i-1];
get_ready();
int ret = 0;
for(int i=0;i<=n-2;i++)
ret = (ret + 1LL*dp[i]*pw[n-2-i]%MOD*ifct[n-2-i]%MOD)%MOD;
return 1LL*ret*fct[n-2]%MOD*pro%MOD;
}
};
@details@
当我看到这个做法的瞬间:woc 这是什么神仙操作。
果真人类智慧啊。
但我觉得这个数据范围好像fft可以过?
@topcoder - SRM697D1L3@ ConnectedStates的更多相关文章
- TopCoder kawigiEdit插件配置
kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...
- 记第一次TopCoder, 练习SRM 583 div2 250
今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...
- TopCoder比赛总结表
TopCoder 250 500 ...
- Topcoder几例C++字符串应用
本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...
- TopCoder
在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...
- TopCoder SRM 596 DIV 1 250
body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...
- 求拓扑排序的数量,例题 topcoder srm 654 div2 500
周赛时遇到的一道比较有意思的题目: Problem Statement There are N rooms in Maki's new house. The rooms are number ...
- TopCoder SRM 590
第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement Fox Ciel is going to play Gomoku with her friend ...
- Topcoder Arena插件配置和训练指南
一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...
随机推荐
- Tomcate 启动异常,java.net.BindException: Address already in use: JVM_Bind:80的解决办法
一直用Tomcat,但是前几天突然报错: java.net.BindException: Address already in use: JVM_Bind:80 第一反应就是80端 ...
- Python之路,Day3- Python基础(转载Alex)
本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 温故知新 1. 集合 主要作用: 去重 关系测 ...
- caffe 的docker安装过程及相关linux操作总结
一.caffe 和 docker的安装编译 docker pull caffe镜像(注意使用docker安装省去安装CUDA和cudnn的安装.) 安装相关依赖包 安装opencv3(使用源码安装) ...
- ML面试1000题系列(41-50)
本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 41. #include和#include“fi ...
- laravel-admin
laravel-admin 文档地址: http://laravel-admin.org/docs/#/zh/
- 微信小程序开发之图片等比例缩放 获取屏幕尺寸图片尺寸 自适应
wxml: <image style="width: {{imagewidth}}px; height: {{imageheight}}px;" src="{{i ...
- Sql server定时执行某个sql 通过Windows 计划任务(非代理Job方式)
建立 bat文件.内容如下: osql -s "xxx.xxx.xx.x" -U sa -P sa -d DB -i TruncateSql.sql osql -S "l ...
- golang内置函数
- Python中输入和输出(打印)数据
一个程序要进行交互,就需要进行输入,进行输入→处理→输出的过程.所以就需要用到输入和输出功能.同样的,在Python中,怎么实现输入和输出? Python3中的输入方式: Python提供了 inpu ...
- 继续对dubbo源代码进行maven builder
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/enson16855/article/details/32073981 原文地址:http://dtb ...