Disney's FastPass

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2336    Accepted Submission(s):
644

Problem Description

Disney's FastPass is a virtual queuing system
created by the Walt Disney Company. First introduced in 1999 (thugh the idea of
a ride reservation system was first introduced in world fairs), Fast-Pass allows
guests to avoid long lines at the attractions on which the system is installed,
freeing them to enjoy other attractions during their wait. The service is
available at no additional charge to all park guests.
---
wikipedia


Disneyland is a large theme park
with plenties of entertainment facilities, also with a large number of tourists.
Normally, you need to wait for a long time before geting the chance to enjoy any
of the attractions. The FastPass is a system allowing you to pick up
FastPass-tickets in some specific position, and use them at the corresponding
facility to avoid long lines. With the help of the FastPass System, one can
arrange his/her trip more efficiently.
You are given the map of the whole
park, and there are some attractions that you are interested in. How to visit
all the interested attractions within the shortest time?

 
Input
The first line contains an integer T(1<=T<=25),
indicating the number of test cases.
Each test case contains several
lines.
The first line contains three integers N,M,K(1 <= N <= 50; 0
<= M <= N(N - 1)/2; 0 <= K <= 8), indicating the number of
locations(starting with 1, and 1 is the only gate of the park where the trip
must be started and ended), the number of roads and the number of interested
attractions.
The following M lines each contains three integers A,B,D(1 <=
A,B <= N; 0 <= D <= 10^4) which means it takes D minutes to travel
between location A and location B.
The following K lines each contains
several integers Pi, Ti, FTi,Ni,
Fi,1, Fi,2 ... Fi,Ni-1, FiNi ,(1
<= Pi,Ni, Fi,j <=N, 0 <=
FTi <= Ti <= 10^4), which means the ith interested
araction is placed at location Pi and there are Ni locations Fi,1;
Fi,2 ... Fi,Ni where you can get the FastPass
for the ith attraction. If you come to the ith attraction with its FastPass, you
need to wait for only FTi minutes, otherwise you need to wait for Ti
minutes.
You can assume that all the locations are connected and there is at
most one road between any two locations.
Note that there might be several
attrractions at one location.
 
Output
For each test case in the input, print one line: "Case
#X: Y", where X is the test case number (starting with 1) and Y is the minimum
time of the trip.
 
Sample Input
2
4 5 2
1 2 8
2 3 4
3 4 19
4 1 6
2 4 7
2 25 18 1 3
4 12 6 1 3
4 6 2
1 2 5
1 4 4
3 1 1
3 2 1
3 4 1
2 4 10
2 8 3 1 4
4 8 3 1 2
 
Sample Output
Case #1: 53
Case #2: 14
 
题意:游戏园里有N个区域,有M条边连接这N个区域,有K个要访问的景点。对于每个景点告诉你这个景点所在的区域,要访问这个景点需要等待一定时间,如果没有FastPass,等待时间有Ti,否则等待时间为FTi,接下来的Ni,表示有Ni个区域可以得到这个景点的FastPass,问从区域1出发,再回到区域1所需要的最少时间。
 
第一次写状态压缩,参照别人的代码。首先是floyd预处理出任意两点之间的最短距离。dp[state1][state2][u]表示在该状态state1(已经访问过的景点)、state2(手中有的景点的票)、目前所在的位置时所花费的时间的最小值,于是答案就是dp[(1<<k)-1][state][1]了(0<=state<(1<<n))。
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
#define M
#define N 60
using namespace std;
int n,m,k,ans;
int map[N][N];
int p[N],t[N],ft[N],pass[N];
int dp[<<][<<][N]; void floyd()
{
int i,j,k;
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j])
map[i][j]=map[i][k]+map[k][j];
} void Get_Dp()
{
int i,j,u,v;
for(i=; i<=(<<k); i++)
for(j=; j<=(<<k); j++)
for(u=; u<=n; u++)
dp[i][j][u]=INF;
dp[][][]=;
for(int state1=; state1<(<<k); state1++)
{
for(int state2=; state2<(<<k); state2++)
{
for(u=; u<=n; u++)
{
if(dp[state1][state2][u]<INF)
{
for(i=; i<k; i++)
{
if(!(state1&(<<i))) ///单独取state1的每一位数字
{
int cost=map[u][p[i]];
if((state2&(<<i))) cost+=ft[i];
else cost+=t[i];
dp[state1|(<<i)][state2|pass[p[i]]][p[i]]=min(dp[state1|(<<i)][state2|pass[p[i]]][p[i]],dp[state1][state2][u]+cost);
}
}
for(v=; v<=n; v++)
{
dp[state1][state2|pass[v]][v]=min(dp[state1][state2|pass[v]][v],dp[state1][state2][u]+map[u][v]);
}
}
}
}
}
ans=INF;
for(i=; i<(<<k); i++)
ans=min(ans,dp[(<<k)-][i][]);
} int main()
{
int i,j,T,cas,num,v;
scanf("%d",&T);
for(cas=; cas<=T; cas++)
{
scanf("%d%d%d",&n,&m,&k);
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j) map[i][j]=;
else map[i][j]=INF;
int a,b,c;
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
if(map[a][b]>c)
map[a][b]=c,map[b][a]=c;
}
floyd();
memset(pass,,sizeof(pass));
for(i=; i<k; i++)
{
scanf("%d%d%d%d",&p[i],&t[i],&ft[i],&num);
while(num--)
{
scanf("%d",&v);
pass[v]|=(<<i); ///没有进位的加法
}
}
Get_Dp();
printf("Case #%d: %d\n",cas,ans);
}
return ;
}

hdu 4114 Disney's FastPass(最短路+状态压缩)的更多相关文章

  1. hdu 4114 Disney's FastPass 状压dp

    Disney's FastPass Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.ph ...

  2. [hdu P4114] Disney's FastPass

    [hdu P4114] Disney's FastPass Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  3. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  4. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  5. HDU 3605:Escape(最大流+状态压缩)

    http://acm.hdu.edu.cn/showproblem.php?pid=3605 题意:有n个人要去到m个星球上,这n个人每个人对m个星球有一个选择,即愿不愿意去,"Y" ...

  6. HDU 2809 God of War(DP + 状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2809 题目大意:给出战神吕布的初始攻击力ATI.防御力DEF.生命值HP.每升一级增加的攻击力In_A ...

  7. POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)

    题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...

  8. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  9. hdu - 1429 胜利大逃亡(续) (bfs状态压缩)

    http://acm.hdu.edu.cn/showproblem.php?pid=1429 终于开始能够做状态压缩的题了,虽然这只是状态压缩里面一道很简单的题. 状态压缩就是用二进制的思想来表示状态 ...

随机推荐

  1. springmvc 使用了登录拦截器之后静态资源还是会被拦截的处理办法

    解决办法 在拦截器的配置里加上静态资源的处理 参考https://www.jb51.net/article/103704.htm

  2. 1、jxl导入/导出excel案例,黏贴即可运行

    package junit.test; import java.io.File; import java.io.IOException; import java.util.ArrayList; imp ...

  3. linux挂载点 和 文件系统$ mount$ cat /etc/fstab$ vgs$ pvs$ lvs$ df -h$ lsof +D / /* beware not to kill your box */

    $ mount$ cat /etc/fstab$ vgs$ pvs$ lvs$ df -h$ lsof +D / /* beware not to kill your box */ 一共挂载了多少文件 ...

  4. xor

    xor 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言1048576K 64bit IO Format: %lld 题目描述 Your are given n ...

  5. IDG资本全球拼图:近10年揽26家独角兽,最敢出手VC再造"VC+"

    IDG资本全球拼图:近10年揽26家独角兽,最敢出手VC再造"VC+" 2017-04-01 15:33   两天前,IDG资本合伙人过以宏提出的“VC+”,又有了新的内涵——全球 ...

  6. 蚁群算法MATLAB解TSP问题

    Excel表exp12_3_1.xls中数据为: clc clear all [xdata,textdata]=xlsread('exp12_3_1.xls'); %加载20个城市的数据,数据按照表格 ...

  7. 高效整洁CSS代码原则(上)

    CSS学起来并不难,但在大型项目中,就变得难以管理,特别是不同的人在CSS书写风格上稍有不同,团队上就更加难以沟通,为此总结了一些如何实现高效整洁的CSS代码原则: 1. 使用Reset但并非全局Re ...

  8. python ndarray相关操作:拼接

  9. 在Liferay 7中如何自定义一个Portlet的toolbar

    哈哈,懒得自己写了,直接贴教程了,你想为那个portlet添加自定义的toolbar,就在javax.portlet.name=属性中写上它的值.教程博客:Adding Portlet URL in ...

  10. 【SPOJ 220】 PHRASES - Relevant Phrases of Annihilation

    [链接]h在这里写链接 [题意]     给你n(n<=10)个字符串.     每个字符串长度最大为1e4;     问你能不能找到一个子串.     使得这个子串,在每个字符串里面都不想交出 ...