3384 -- Feng Shui

  构造半平面交,然后求凸包上最远点对。

  这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被覆盖的面积最小。反之就是求圆覆盖的区域最大。首先我们可以求出圆心放置的位置的区域,这个要利用半平面交,将原多边形区域向内收缩r的距离。要求两个圆覆盖的区域最大,也就是它们相交的面积最小,也就是两个圆心的距离要尽可能的大。这样就说明了,这题的做法是要求出凸包上面的最远点对。

  做这题的时候犯了两个错误,一个是没有设置对精度,直接用了cout的默认输出,另一个则是没有想到收缩以后,剩余的多边形的顶点数会少于n。

代码如下:

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
} ;
template<class T> T sqr(T x) { return x * x;} typedef Point Vec;
Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);}
Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);}
Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);}
Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} const double EPS = 1e-;
const double PI = acos(-1.0);
inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
bool operator < (Point a, Point b) { return sgn(a.x - b.x) < || sgn(a.x - b.x) == && a.y < b.y;}
bool operator == (Point a, Point b) { return sgn(a.x - b.x) == || sgn(a.y - b.y) == ;} inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double dotDet(Point o, Point a, Point b) { return dotDet(a - o, b - o);}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline double toRad(double deg) { return deg/ 180.0 * PI;}
inline double angle(Vec v) { return atan2(v.y, v.x);}
Vec normal(Vec x) {
double len = vecLen(x);
return Vec(-x.y, x.x) / len;
} struct Poly {
vector<Point> pt;
Poly() { pt.clear();}
~Poly() {}
Poly(vector<Point> &pt) : pt(pt) {}
Point operator [] (int x) const { return pt[x];}
int size() { return pt.size();}
double area() {
double ret = 0.0;
int sz = pt.size();
for (int i = ; i < sz; i++) {
ret += crossDet(pt[i], pt[i - ]);
}
return fabs(ret / 2.0);
}
} ; struct DLine {
Point p;
Vec v;
double ang;
DLine() {}
DLine(Point p, Vec v) : p(p), v(v) { ang = atan2(v.y, v.x);}
bool operator < (const DLine &L) const { return ang < L.ang;}
DLine move(double x) {
Vec nor = normal(v);
nor = nor * x;
return DLine(p + nor, v);
}
} ; inline bool onLeft(DLine L, Point p) { return crossDet(L.v, p - L.p) > ;}
Point dLineIntersect(DLine a, DLine b) {
Vec u = a.p - b.p;
double t = crossDet(b.v, u) / crossDet(a.v, b.v);
return a.p + a.v * t;
} Poly halfPlane(DLine *L, int n) {
Poly ret = Poly();
sort(L, L + n);
int fi, la;
Point *p = new Point[n];
DLine *q = new DLine[n];
q[fi = la = ] = L[];
for (int i = ; i < n; i++) {
while (fi < la && !onLeft(L[i], p[la - ])) la--;
while (fi < la && !onLeft(L[i], p[fi])) fi++;
q[++la] = L[i];
if (fabs(crossDet(q[la].v, q[la - ].v)) < EPS) {
la--;
if (onLeft(q[la], L[i].p)) q[la] = L[i];
}
if (fi < la) p[la - ] = dLineIntersect(q[la - ], q[la]);
}
while (fi < la && !onLeft(q[fi], p[la - ])) la--;
if (la < fi) return ret;
p[la] = dLineIntersect(q[la], q[fi]);
for (int i = fi; i <= la; i++) ret.pt.push_back(p[i]);
return ret;
} const int N = ;
Point pt[N];
DLine dl[N]; int main() {
// freopen("in", "r", stdin);
int n;
double r;
while (cin >> n >> r) {
for (int i = ; i < n; i++) {
cin >> pt[i].x >> pt[i].y;
if (i) dl[i - ] = DLine(pt[i], pt[i - ] - pt[i]).move(r + EPS);
}
dl[n - ] = DLine(pt[], pt[n - ] - pt[]).move(r + EPS);
Poly tmp = halfPlane(dl, n);
if (tmp.size() <= ) {
for (int i = ; i < n; i++) {
if (i) dl[i - ] = DLine(pt[i], pt[i - ] - pt[i]).move(r - EPS);
}
dl[n - ] = DLine(pt[], pt[n - ] - pt[]).move(r - EPS);
tmp = halfPlane(dl, n);
}
double dis = 0.0;
int id[] = { , };
n = tmp.size();
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
if (dis < vecLen(tmp[i] - tmp[j])) {
dis = vecLen(tmp[i] - tmp[j]);
id[] = i;
id[] = j;
}
}
}
// cout << vecLen(tmp[id[0]] - tmp[id[1]]) << endl;
cout.precision();
cout << tmp[id[]].x << ' ' << tmp[id[]].y << ' ' << tmp[id[]].x << ' ' << tmp[id[]].y << endl;
}
return ;
}

  吸取教训,继续努力!

——written by Lyon

poj 3384 Feng Shui (Half Plane Intersection)的更多相关文章

  1. POJ 3384 Feng Shui 半平面交

    题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...

  2. POJ 3384 Feng Shui (半平面交)

    Feng Shui Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3743   Accepted: 1150   Speci ...

  3. POJ 3384 Feng Shui(计算几何の半平面交+最远点对)

    Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...

  4. POJ 3384 Feng Shui

    http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...

  5. POJ 3384 Feng Shui --直线切平面

    题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...

  6. POJ 3384 Feng Shui(半平面交向内推进求最远点对)

    题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...

  7. POJ 3384 Feng Shui 凸包直径 + 半平面交

    G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...

  8. poj 3335 Rotating Scoreboard (Half Plane Intersection)

    3335 -- Rotating Scoreboard 给出一个多边形,要求判断它的内核是否存在. 还是半平面交的题,在这道题中,公告板允许其所在位置与直线共线也算是可见,于是我们就可以将每一条直线微 ...

  9. poj 1279 Art Gallery (Half Plane Intersection)

    1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...

随机推荐

  1. 使用log4j打印日志

    在项目中我们必不可少需要打印日志,通过日志我们可以查看系统的运行状态是否正常,当程序出现异常的时候,我们也可以通过查看日志来定位问题的位置,给程序员的工作带来了极大的便利. 以下这边博客的内容是我从一 ...

  2. Springboot 创建的maven获取resource资源下的文件的两种方式

    Springboot 创建的maven项目 打包后获取resource下的资源文件的两种方式: 资源目录: resources/config/wordFileXml/wordFileRecord.xm ...

  3. python 基本数据结构 ndarray

  4. 基于spring-boot的测试桩设计--几种常见的controller

    第一种:通过@RequestBody,直接将请求体映射到对象 //@RequestBody @RequestMapping(value = "addUser", method = ...

  5. vue-cli3 关闭eslint

    关闭eslint 直接注释掉package.json文件中eslint的配置就可以了(以下是vue-cli的默认配置) "eslintConfig": { "root&q ...

  6. Spring_Bean的生命周期

    init-method="init" destroy-method="destory" 指定初始化和销毁方法 创建Bean后置处理器 <!-- 实现Bea ...

  7. TRS OM error

    http://192.168.1.1/ http://tplogin.cn/admin888 wddqaz123456789 package="com.trs.om.bean" m ...

  8. Directx11教程(56) 建立一个skydome

    原文:Directx11教程(56) 建立一个skydome       本章建立一个skydome(天空穹),主要学习如何使用cube mapping.      cube map就是把六张纹理当作 ...

  9. 洛谷P1879 玉米田

    题目描述 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他 ...

  10. Inno Setup生成桌面快捷方式

    在做项目的时候,需要打包成exe安装包.先前使用的是vs来打包,生成了setup.exe 和 *.msi的安装文件,不过也算顺利. 后因为要求采取 Inno Setup来打包程序,其中遇到个创建快捷方 ...