Online Classification
Another challenging trend in Internet evolution is the tremendous growth of the infrastructure in every dimension, including bandwidth capacity of links(背景). Most real-world applications of traffic classification require tools to work online, reporting live information or triggering action according to classification results(目的). But online traffic classification on modern links requires trade-offs(局限) among accuracy, performance, and cost. The practical challenges have led to many published studies with limited evaluation in a simplified environment(当前只是简单地弱化了应用场景) rather than a systematic rigorous analysis of these trade-offs. For example, in order to work online without custom (often prohibitively expensive) hardware(额外的硬件支持是个敏感的话题), complex DPI classifiers must sacrifice functionality — either analyzing a shorter portion of the payload stream of each traffic flow, or simplifying their pattern matching approaches.
Machine learning techniques require similar compromises(ML方法同样需要调整策略以适应online) to lower or bound the latency of classification during online execution. Data reduction is generally implemented by limiting the number of packets of a flow [9, 10](方法1:减少数据包数) used for extracting classification features. Computational overhead is limited by reducing the set of features [11] used to classify traffic, ideally using features that can be extracted with low computational complexity(方法2:降低特征提取的复杂度). Some features are not suitable for online classification because they are available only at the end of a flow(方法3:不再使用流的终止特征), such as total transferred bytes.
Limiting the number of packets used to extract features offers several benefits: lower feature extraction complexity; lower latency since classification can occur early in each traffic flow; and lower memory cost to maintain flow state during classification.
Dainotti A, Pescape A, Claffy K C. Issues and future directions in traffic classification[J]. IEEE network. 2012, 26(1).
Online Classification的更多相关文章
- W3School-CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...
- Large Margin DAGs for Multiclass Classification
Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- 自然语言23_Text Classification with NLTK
QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...
- MATLAB 图像分类 Image Category Classification Using Bag of Features
使用MATLAB实现图像的识别,这是MATLAB官网上面的例子,学习一下. http://cn.mathworks.com/help/vision/examples/image-category-cl ...
- Galaxy Classification
10.3 Data Preparation After removing a large number of the columns from the raw SDSS dataset, introd ...
- Kaiju: Fast and sensitive taxonomic classification for metagenomics
Kaiju: Fast and sensitive taxonomic classification for metagenomics 问题描述:However, nucleotide comp ...
- 《Automatic Face Classification of Cushing’s Syndrome in Women – A Novel Screening Approach》学习笔记
<针对女性库欣综合征患者的自动面部分类-一种新颖的筛查方法> Abstract 目的:库兴氏综合征对身体造成相当大的伤害如果不及时治疗,还经常是诊断的时间太长.在这项研究中,我们旨在测试面 ...
- [CS231n-CNN] Image classification and the data-driven approach, k-nearest neighbor, Linear classification I
课程主页:http://cs231n.stanford.edu/ Task: Challenges: _________________________________________________ ...
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
随机推荐
- oracle-ORA-01567错误
删除日志4时将在线索1中保留少于两个日志文件
- 两篇论文之CNN中正交操作
CNN的权值正交性和特征正交性,在一定程度上是和特征表达的差异性存在一定联系的. 下面两篇论文,一篇是在训练中对权值添加正交正则提高训练稳定性,一篇是对特征添加正交性的损失抑制过拟合. 第一篇:Ort ...
- Apache CarbonData1.3简介
CarbonData是一种高性能大数据存储方案,支持快速过滤查找和即席OLAP分析,已在20+企业生产环境上部署应用,其中最大的单一集群数据规模达到几万亿.针对当前大数据领域分析场景需求各异而导致的存 ...
- 容器云平台使用体验:DaoCloud
容器技术风起云涌,在国内也涌现出了很多容器技术创业公司,本文介绍容器厂商DaoCloud提供的容器云平台,通过使用容器云平台,可以让大家更加了解容器,并可以学习不同容器云平台的优势. 1. ...
- python的sorted排序具体解释
排序.在编程中常常遇到的算法.我也在几篇文章中介绍了一些关于排序的算法. 有的高级语言内置了一些排序函数.本文讲述Python在这方面的工作.供使用python的程序猿们參考,也让没有使用python ...
- 使用DataWorks调度DLA循环任务
DataWorks是阿里云上的一款热门产品,可以为用户提供大数据开发调度服务.它支持了Data Lake Analytics(后文简称DLA)以后,DLA用户可以通过它进行定时任务调度,非常方便.本文 ...
- WebGL three.js学习笔记 加载外部模型以及Tween.js动画
WebGL three.js学习笔记 加载外部模型以及Tween.js动画 本文的程序实现了加载外部stl格式的模型,以及学习了如何把加载的模型变为一个粒子系统,并使用Tween.js对该粒子系统进行 ...
- 快递查询API接口集成,有需要的可以直接用
适用于涉及经常发货.寄快递的人群.企业.电商网站.微信公众号平台等对接使用.支持国内外三百多家快递及物流公司的快递单号一站式查询. 使用说明: 1.KuadidiAPI.php 不需要修改改任何东西 ...
- jQuery Css类
通过 jQuery,可以很容易地对 CSS 元素进行操作 jQuery 操作 CSS jQuery 拥有若干进行 CSS 操作的方法.我们将学习下面这些: addClass() - 向被选元素添加一个 ...
- C#面向对象基础--类与对象
1.类与对象 类是面向对象编程的基本单元:类造出来的变量叫对象. 一个类包含俩种成员:字段与方法. 字段即变量,方法即函数. 面向对象思想:教给我们如何合理的运用类的规则去编写代码. 2.类的字段 字 ...