Online Classification
Another challenging trend in Internet evolution is the tremendous growth of the infrastructure in every dimension, including bandwidth capacity of links(背景). Most real-world applications of traffic classification require tools to work online, reporting live information or triggering action according to classification results(目的). But online traffic classification on modern links requires trade-offs(局限) among accuracy, performance, and cost. The practical challenges have led to many published studies with limited evaluation in a simplified environment(当前只是简单地弱化了应用场景) rather than a systematic rigorous analysis of these trade-offs. For example, in order to work online without custom (often prohibitively expensive) hardware(额外的硬件支持是个敏感的话题), complex DPI classifiers must sacrifice functionality — either analyzing a shorter portion of the payload stream of each traffic flow, or simplifying their pattern matching approaches.
Machine learning techniques require similar compromises(ML方法同样需要调整策略以适应online) to lower or bound the latency of classification during online execution. Data reduction is generally implemented by limiting the number of packets of a flow [9, 10](方法1:减少数据包数) used for extracting classification features. Computational overhead is limited by reducing the set of features [11] used to classify traffic, ideally using features that can be extracted with low computational complexity(方法2:降低特征提取的复杂度). Some features are not suitable for online classification because they are available only at the end of a flow(方法3:不再使用流的终止特征), such as total transferred bytes.
Limiting the number of packets used to extract features offers several benefits: lower feature extraction complexity; lower latency since classification can occur early in each traffic flow; and lower memory cost to maintain flow state during classification.
Dainotti A, Pescape A, Claffy K C. Issues and future directions in traffic classification[J]. IEEE network. 2012, 26(1).
Online Classification的更多相关文章
- W3School-CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...
- Large Margin DAGs for Multiclass Classification
Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- 自然语言23_Text Classification with NLTK
QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...
- MATLAB 图像分类 Image Category Classification Using Bag of Features
使用MATLAB实现图像的识别,这是MATLAB官网上面的例子,学习一下. http://cn.mathworks.com/help/vision/examples/image-category-cl ...
- Galaxy Classification
10.3 Data Preparation After removing a large number of the columns from the raw SDSS dataset, introd ...
- Kaiju: Fast and sensitive taxonomic classification for metagenomics
Kaiju: Fast and sensitive taxonomic classification for metagenomics 问题描述:However, nucleotide comp ...
- 《Automatic Face Classification of Cushing’s Syndrome in Women – A Novel Screening Approach》学习笔记
<针对女性库欣综合征患者的自动面部分类-一种新颖的筛查方法> Abstract 目的:库兴氏综合征对身体造成相当大的伤害如果不及时治疗,还经常是诊断的时间太长.在这项研究中,我们旨在测试面 ...
- [CS231n-CNN] Image classification and the data-driven approach, k-nearest neighbor, Linear classification I
课程主页:http://cs231n.stanford.edu/ Task: Challenges: _________________________________________________ ...
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
随机推荐
- 数据分析1:安装tushare安装包
1. 2. 3.重点内容
- 【错误收集】SVN冲突解决 标签: 错误收集 2016-03-13 08:44 624人阅读 评论(24) 收藏
最近在倒代码,这真的是一件挺低效率的事情的,但是为了之后工作的进行,必须把这些已经做好的界面,做好的功能搬到新的框架上来,所以安排了10来个同学一起倒代码,因为大家共用一个解决方案,所以使用svn来进 ...
- Java练习 SDUT-2174_回文时间
回文时间 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description HH 每天都会熬夜写代码,然后很晚才睡觉,但是每天早晨六点多必 ...
- 坚守安全第一准则!阿里云接连通过等保2.0测评、ISO国际认证
斩获新资质 数字时代,数据的安全对于互联网用户来说显得尤为重要.阿里云更是一直坚持“安全第一准则”,致力于为客户的数据安全搭建更健全机制. 2019年5月,阿里云“电子政务云平台系统”正式通过网络安全 ...
- @loj - 2093@ 「ZJOI2016」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...
- Android Service Summary
In the Androird, service is a none-UI background process that is doing some specific jobs. 6.1 Ex ...
- Python学习之路6☞函数,递归,内置函数
一python中的函数 函数是逻辑结构化和过程化的一种编程方法. python中函数定义方法: def test(x): "The function definitions" x+ ...
- 现代IM系统中的消息系统架构 - 模型篇
前言 在架构篇中我们介绍了现代IM消息系统的架构,介绍了Timeline的抽象模型以及基于Timeline模型构建的一个支持『消息漫游』.『多端同步』和『消息检索』多种高级功能的消息系统的典型架构.架 ...
- Laravel5.1 实现第三方登录认证教程之 - 微信登录
https://laravel-china.org/topics/2451/laravel51-implementation-of-the-third-party-login-authenticati ...
- Go 语言开发工具
Go 语言开发工具 LiteIDE LiteIDE是一款开源.跨平台的轻量级Go语言集成开发环境(IDE). 支持的操作系统 Windows x86 (32-bit or 64-bit) Linux ...