Gif动图压缩java版
简单说明下,如果不是压缩动图的话只用java本身的包足够实现压缩和截取图片了,为了能够压缩gif动图,这里引用了两个文件
AnimatedGifEncoder 和 GifDecoder,
先用Decoder来获取到gif的文件信息(每帧的图片,帧与帧的间隔……),然后用一个循环来处理每帧图片,同时新建一个Encoder,其它信息照搬Decoder获取到的,只有每帧的图片都单独压缩处理下,最终完成版的就是压缩后的。
在ImageUtils中有main方法,展示了如何压缩图片的,并计算了压缩一个gif的平均耗时,实验采用的是一个三帧的简单gif动图,平均用时0.6s左右,还是不错的。
// 开始于1520496592958, 结束于1520496629281, 平均用时605毫秒. 60次
// 开始于1520496686684, 结束于1520496757617, 平均用时591毫秒. 120次
// 开始于1520496805643, 结束于1520496876973, 平均用时594毫秒. 120次
// 开始于1520496915209, 结束于1520496983136, 平均用时566毫秒. 120次
// 开始于1520497090507, 结束于1520497125541, 平均用时583毫秒. 60次
// 开始于1520497218145, 结束于1520497330390, 平均用时561毫秒. 200次
// 开始于1520497363505, 结束于1520497645334, 平均用时563毫秒. 500次
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream; /**
* Class AnimatedGifEncoder - Encodes a GIF file consisting of one or more
* frames.
* <p>
* <pre>
* Example:
* AnimatedGifEncoder e = new AnimatedGifEncoder();
* e.start(outputFileName);
* e.setDelay(1000); // 1 frame per sec
* e.addFrame(image1);
* e.addFrame(image2);
* e.finish();
* </pre>
* <p>
* No copyright asserted on the source code of this class. May be used for any
* purpose, however, refer to the Unisys LZW patent for restrictions on use of
* the associated LZWEncoder class. Please forward any corrections to
* kweiner@fmsware.com.
*
* @author Kevin Weiner, FM Software
* @version 1.03 November 2003
*/ public class AnimatedGifEncoder { protected int width; // image size protected int height; protected Color transparent = null; // transparent color if given protected int transIndex; // transparent index in color table protected int repeat = -1; // no repeat protected int delay = 0; // frame delay (hundredths) protected boolean started = false; // ready to output frames protected OutputStream out; protected BufferedImage image; // current frame protected byte[] pixels; // BGR byte array from frame protected byte[] indexedPixels; // converted frame indexed to palette protected int colorDepth; // number of bit planes protected byte[] colorTab; // RGB palette protected boolean[] usedEntry = new boolean[256]; // active palette entries protected int palSize = 7; // color table size (bits-1) protected int dispose = -1; // disposal code (-1 = use default) protected boolean closeStream = false; // close stream when finished protected boolean firstFrame = true; protected boolean sizeSet = false; // if false, get size from first frame protected int sample = 10; // default sample interval for quantizer /**
* Sets the delay time between each frame, or changes it for subsequent frames
* (applies to last frame added).
*
* @param ms int delay time in milliseconds
*/
public void setDelay(int ms) {
delay = Math.round(ms / 10.0f);
} /**
* Sets the GIF frame disposal code for the last added frame and any
* subsequent frames. Default is 0 if no transparent color has been set,
* otherwise 2.
*
* @param code int disposal code.
*/
public void setDispose(int code) {
if (code >= 0) {
dispose = code;
}
} /**
* Sets the number of times the set of GIF frames should be played. Default is
* 1; 0 means play indefinitely. Must be invoked before the first image is
* added.
*
* @param iter int number of iterations.
* @return
*/
public void setRepeat(int iter) {
if (iter >= 0) {
repeat = iter;
}
} /**
* Sets the transparent color for the last added frame and any subsequent
* frames. Since all colors are subject to modification in the quantization
* process, the color in the final palette for each frame closest to the given
* color becomes the transparent color for that frame. May be set to null to
* indicate no transparent color.
*
* @param c Color to be treated as transparent on display.
*/
public void setTransparent(Color c) {
transparent = c;
} /**
* Adds next GIF frame. The frame is not written immediately, but is actually
* deferred until the next frame is received so that timing data can be
* inserted. Invoking <code>finish()</code> flushes all frames. If
* <code>setSize</code> was not invoked, the size of the first image is used
* for all subsequent frames.
*
* @param im BufferedImage containing frame to write.
* @return true if successful.
*/
public boolean addFrame(BufferedImage im) {
if ((im == null) || !started) {
return false;
}
boolean ok = true;
try {
if (!sizeSet) {
// use first frame's size
setSize(im.getWidth(), im.getHeight());
}
image = im;
getImagePixels(); // convert to correct format if necessary
analyzePixels(); // build color table & map pixels
if (firstFrame) {
writeLSD(); // logical screen descriptior
writePalette(); // global color table
if (repeat >= 0) {
// use NS app extension to indicate reps
writeNetscapeExt();
}
}
writeGraphicCtrlExt(); // write graphic control extension
writeImageDesc(); // image descriptor
if (!firstFrame) {
writePalette(); // local color table
}
writePixels(); // encode and write pixel data
firstFrame = false;
} catch (IOException e) {
ok = false;
} return ok;
} /**
* Flushes any pending data and closes output file. If writing to an
* OutputStream, the stream is not closed.
*/
public boolean finish() {
if (!started)
return false;
boolean ok = true;
started = false;
try {
out.write(0x3b); // gif trailer
out.flush();
if (closeStream) {
out.close();
}
} catch (IOException e) {
ok = false;
} // reset for subsequent use
transIndex = 0;
out = null;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true; return ok;
} /**
* Sets frame rate in frames per second. Equivalent to
* <code>setDelay(1000/fps)</code>.
*
* @param fps float frame rate (frames per second)
*/
public void setFrameRate(float fps) {
if (fps != 0f) {
delay = Math.round(100f / fps);
}
} /**
* Sets quality of color quantization (conversion of images to the maximum 256
* colors allowed by the GIF specification). Lower values (minimum = 1)
* produce better colors, but slow processing significantly. 10 is the
* default, and produces good color mapping at reasonable speeds. Values
* greater than 20 do not yield significant improvements in speed.
*
* @param quality int greater than 0.
* @return
*/
public void setQuality(int quality) {
if (quality < 1)
quality = 1;
sample = quality;
} /**
* Sets the GIF frame size. The default size is the size of the first frame
* added if this method is not invoked.
*
* @param w int frame width.
* @param h int frame width.
*/
public void setSize(int w, int h) {
if (started && !firstFrame)
return;
width = w;
height = h;
if (width < 1)
width = 320;
if (height < 1)
height = 240;
sizeSet = true;
} /**
* Initiates GIF file creation on the given stream. The stream is not closed
* automatically.
*
* @param os OutputStream on which GIF images are written.
* @return false if initial write failed.
*/
public boolean start(OutputStream os) {
if (os == null)
return false;
boolean ok = true;
closeStream = false;
out = os;
try {
writeString("GIF89a"); // header
} catch (IOException e) {
ok = false;
}
return started = ok;
} /**
* Initiates writing of a GIF file with the specified name.
*
* @param file String containing output file name.
* @return false if open or initial write failed.
*/
public boolean start(String file) {
boolean ok = true;
try {
out = new BufferedOutputStream(new FileOutputStream(file));
ok = start(out);
closeStream = true;
} catch (IOException e) {
ok = false;
}
return started = ok;
} /**
* Analyzes image colors and creates color map.
*/
protected void analyzePixels() {
int len = pixels.length;
int nPix = len / 3;
indexedPixels = new byte[nPix];
NeuQuant nq = new NeuQuant(pixels, len, sample);
// initialize quantizer
colorTab = nq.process(); // create reduced palette
// convert map from BGR to RGB
for (int i = 0; i < colorTab.length; i += 3) {
byte temp = colorTab[i];
colorTab[i] = colorTab[i + 2];
colorTab[i + 2] = temp;
usedEntry[i / 3] = false;
}
// map image pixels to new palette
int k = 0;
for (int i = 0; i < nPix; i++) {
int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
usedEntry[index] = true;
indexedPixels[i] = (byte) index;
}
pixels = null;
colorDepth = 8;
palSize = 7;
// get closest match to transparent color if specified
if (transparent != null) {
transIndex = findClosest(transparent);
}
} /**
* Returns index of palette color closest to c
*/
protected int findClosest(Color c) {
if (colorTab == null)
return -1;
int r = c.getRed();
int g = c.getGreen();
int b = c.getBlue();
int minpos = 0;
int dmin = 256 * 256 * 256;
int len = colorTab.length;
for (int i = 0; i < len; ) {
int dr = r - (colorTab[i++] & 0xff);
int dg = g - (colorTab[i++] & 0xff);
int db = b - (colorTab[i] & 0xff);
int d = dr * dr + dg * dg + db * db;
int index = i / 3;
if (usedEntry[index] && (d < dmin)) {
dmin = d;
minpos = index;
}
i++;
}
return minpos;
} /**
* Extracts image pixels into byte array "pixels"
*/
protected void getImagePixels() {
int w = image.getWidth();
int h = image.getHeight();
int type = image.getType();
if ((w != width) || (h != height) || (type != BufferedImage.TYPE_3BYTE_BGR)) {
// create new image with right size/format
BufferedImage temp = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
Graphics2D g = temp.createGraphics();
g.drawImage(image, 0, 0, null);
image = temp;
}
pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
} /**
* Writes Graphic Control Extension
*/
protected void writeGraphicCtrlExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xf9); // GCE label
out.write(4); // data block size
int transp, disp;
if (transparent == null) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0) {
disp = dispose & 7; // user override
}
disp <<= 2; // packed fields
out.write(0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp); // 8 transparency flag writeShort(delay); // delay x 1/100 sec
out.write(transIndex); // transparent color index
out.write(0); // block terminator
} /**
* Writes Image Descriptor
*/
protected void writeImageDesc() throws IOException {
out.write(0x2c); // image separator
writeShort(0); // image position x,y = 0,0
writeShort(0);
writeShort(width); // image size
writeShort(height);
// packed fields
if (firstFrame) {
// no LCT - GCT is used for first (or only) frame
out.write(0);
} else {
// specify normal LCT
out.write(0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
palSize); // 6-8 size of color table
}
} /**
* Writes Logical Screen Descriptor
*/
protected void writeLSD() throws IOException {
// logical screen size
writeShort(width);
writeShort(height);
// packed fields
out.write((0x80 | // 1 : global color table flag = 1 (gct used)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
palSize)); // 6-8 : gct size out.write(0); // background color index
out.write(0); // pixel aspect ratio - assume 1:1
} /**
* Writes Netscape application extension to define repeat count.
*/
protected void writeNetscapeExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xff); // app extension label
out.write(11); // block size
writeString("NETSCAPE" + "2.0"); // app id + auth code
out.write(3); // sub-block size
out.write(1); // loop sub-block id
writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.write(0); // block terminator
} /**
* Writes color table
*/
protected void writePalette() throws IOException {
out.write(colorTab, 0, colorTab.length);
int n = (3 * 256) - colorTab.length;
for (int i = 0; i < n; i++) {
out.write(0);
}
} /**
* Encodes and writes pixel data
*/
protected void writePixels() throws IOException {
LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels, colorDepth);
encoder.encode(out);
} /**
* Write 16-bit value to output stream, LSB first
*/
protected void writeShort(int value) throws IOException {
out.write(value & 0xff);
out.write((value >> 8) & 0xff);
} /**
* Writes string to output stream
*/
protected void writeString(String s) throws IOException {
for (int i = 0; i < s.length(); i++) {
out.write((byte) s.charAt(i));
}
}
} /*
* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
* "Kohonen neural networks for optimal colour quantization" in "Network:
* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
* the algorithm.
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
* this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons who
* receive copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/ // Ported to Java 12/00 K Weiner
class NeuQuant { protected static final int netsize = 256; /* number of colours used */ /* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
protected static final int prime1 = 499; protected static final int prime2 = 491; protected static final int prime3 = 487; protected static final int prime4 = 503; protected static final int minpicturebytes = (3 * prime4); /* minimum size for input image */ /*
* Program Skeleton ---------------- [select samplefac in range 1..30] [read
* image from input file] pic = (unsigned char*) malloc(3*width*height);
* initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
* image header, using writecolourmap(f)] inxbuild(); write output image using
* inxsearch(b,g,r)
*/ /*
* Network Definitions -------------------
*/ protected static final int maxnetpos = (netsize - 1); protected static final int netbiasshift = 4; /* bias for colour values */ protected static final int ncycles = 100; /* no. of learning cycles */ /* defs for freq and bias */
protected static final int intbiasshift = 16; /* bias for fractions */ protected static final int intbias = (((int) 1) << intbiasshift); protected static final int gammashift = 10; /* gamma = 1024 */ protected static final int gamma = (((int) 1) << gammashift); protected static final int betashift = 10; protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */ protected static final int betagamma = (intbias << (gammashift - betashift)); /* defs for decreasing radius factor */
protected static final int initrad = (netsize >> 3); /*
* for 256 cols, radius
* starts
*/ protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */ protected static final int radiusbias = (((int) 1) << radiusbiasshift); protected static final int initradius = (initrad * radiusbias); /*
* and
* decreases
* by a
*/ protected static final int radiusdec = 30; /* factor of 1/30 each cycle */ /* defs for decreasing alpha factor */
protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */ protected static final int initalpha = (((int) 1) << alphabiasshift); protected int alphadec; /* biased by 10 bits */ /* radbias and alpharadbias used for radpower calculation */
protected static final int radbiasshift = 8; protected static final int radbias = (((int) 1) << radbiasshift); protected static final int alpharadbshift = (alphabiasshift + radbiasshift); protected static final int alpharadbias = (((int) 1) << alpharadbshift); /*
* Types and Global Variables --------------------------
*/ protected byte[] thepicture; /* the input image itself */ protected int lengthcount; /* lengthcount = H*W*3 */ protected int samplefac; /* sampling factor 1..30 */ // typedef int pixel[4]; /* BGRc */
protected int[][] network; /* the network itself - [netsize][4] */ protected int[] netindex = new int[256]; /* for network lookup - really 256 */ protected int[] bias = new int[netsize]; /* bias and freq arrays for learning */
protected int[] freq = new int[netsize]; protected int[] radpower = new int[initrad]; /* radpower for precomputation */ /*
* Initialise network in range (0,0,0) to (255,255,255) and set parameters
* -----------------------------------------------------------------------
*/
public NeuQuant(byte[] thepic, int len, int sample) { int i;
int[] p; thepicture = thepic;
lengthcount = len;
samplefac = sample; network = new int[netsize][];
for (i = 0; i < netsize; i++) {
network[i] = new int[4];
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
} public byte[] colorMap() {
byte[] map = new byte[3 * netsize];
int[] index = new int[netsize];
for (int i = 0; i < netsize; i++)
index[network[i][3]] = i;
int k = 0;
for (int i = 0; i < netsize; i++) {
int j = index[i];
map[k++] = (byte) (network[j][0]);
map[k++] = (byte) (network[j][1]);
map[k++] = (byte) (network[j][2]);
}
return map;
} /*
* Insertion sort of network and building of netindex[0..255] (to do after
* unbias)
* -------------------------------------------------------------------------------
*/
public void inxbuild() { int i, j, smallpos, smallval;
int[] p;
int[] q;
int previouscol, startpos; previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; /* really 256 */
} /*
* Main Learning Loop ------------------
*/
public void learn() { int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
byte[] p;
int pix, lim; if (lengthcount < minpicturebytes)
samplefac = 1;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius; rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); // fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad); if (lengthcount < minpicturebytes)
step = 3;
else if ((lengthcount % prime1) != 0)
step = 3 * prime1;
else {
if ((lengthcount % prime2) != 0)
step = 3 * prime2;
else {
if ((lengthcount % prime3) != 0)
step = 3 * prime3;
else
step = 3 * prime4;
}
} i = 0;
while (i < samplepixels) {
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r); altersingle(alpha, j, b, g, r);
if (rad != 0)
alterneigh(rad, j, b, g, r); /* alter neighbours */ pix += step;
if (pix >= lim)
pix -= lengthcount; i++;
if (delta == 0)
delta = 1;
if (i % delta == 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
// fprintf(stderr,"finished 1D learning: final alpha=%f
// !\n",((float)alpha)/initalpha);
} /*
* Search for BGR values 0..255 (after net is unbiased) and return colour
* index
* ----------------------------------------------------------------------------
*/
public int map(int b, int g, int r) { int i, j, dist, a, bestd;
int[] p;
int best; bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */ while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd)
i = netsize; /* stop iter */
else {
i++;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd)
j = -1; /* stop iter */
else {
j--;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
} public byte[] process() {
learn();
unbiasnet();
inxbuild();
return colorMap();
} /*
* Unbias network to give byte values 0..255 and record position i to prepare
* for sort
* -----------------------------------------------------------------------------------
*/
public void unbiasnet() { int i, j; for (i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
} /*
* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
* radpower[|i-j|]
* ---------------------------------------------------------------------------------
*/
protected void alterneigh(int rad, int i, int b, int g, int r) { int j, k, lo, hi, a, m;
int[] p; lo = i - rad;
if (lo < -1)
lo = -1;
hi = i + rad;
if (hi > netsize)
hi = netsize; j = i + 1;
k = i - 1;
m = 1;
while ((j < hi) || (k > lo)) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
} // prevents 1.3 miscompilation
}
if (k > lo) {
p = network[k--];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
}
}
}
} /*
* Move neuron i towards biased (b,g,r) by factor alpha
* ----------------------------------------------------
*/
protected void altersingle(int alpha, int i, int b, int g, int r) { /* alter hit neuron */
int[] n = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
} /*
* Search for biased BGR values ----------------------------
*/
protected int contest(int b, int g, int r) { /* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */ int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
int[] n; bestd = ~(((int) 1) << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos; for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0)
dist = -dist;
a = n[1] - g;
if (a < 0)
a = -a;
dist += a;
a = n[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
} // ==============================================================================
// Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
// K Weiner 12/00 class LZWEncoder { private static final int EOF = -1; private int imgW, imgH; private byte[] pixAry; private int initCodeSize; private int remaining; private int curPixel; // GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu) // General DEFINEs static final int BITS = 12; static final int HSIZE = 5003; // 80% occupancy // GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe) int n_bits; // number of bits/code int maxbits = BITS; // user settable max # bits/code int maxcode; // maximum code, given n_bits int maxmaxcode = 1 << BITS; // should NEVER generate this code int[] htab = new int[HSIZE]; int[] codetab = new int[HSIZE]; int hsize = HSIZE; // for dynamic table sizing int free_ent = 0; // first unused entry // block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
boolean clear_flg = false; // Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw. int g_init_bits; int ClearCode; int EOFCode; // output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over. int cur_accum = 0; int cur_bits = 0; int masks[] = {0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF,
0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF}; // Number of characters so far in this 'packet'
int a_count; // Define the storage for the packet accumulator
byte[] accum = new byte[256]; // ----------------------------------------------------------------------------
LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
} // Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void char_out(byte c, OutputStream outs) throws IOException {
accum[a_count++] = c;
if (a_count >= 254)
flush_char(outs);
} // Clear out the hash table // table clear for block compress
void cl_block(OutputStream outs) throws IOException {
cl_hash(hsize);
free_ent = ClearCode + 2;
clear_flg = true; output(ClearCode, outs);
} // reset code table
void cl_hash(int hsize) {
for (int i = 0; i < hsize; ++i)
htab[i] = -1;
} void compress(int init_bits, OutputStream outs) throws IOException {
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift; // Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits; // Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE(n_bits); ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2; a_count = 0; // clear packet ent = nextPixel(); hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2)
++hshift;
hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize;
cl_hash(hsize_reg); // clear hash table output(ClearCode, outs); outer_loop:
while ((c = nextPixel()) != EOF) {
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing if (htab[i] == fcode) {
ent = codetab[i];
continue;
} else if (htab[i] >= 0) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i == 0)
disp = 1;
do {
if ((i -= disp) < 0)
i += hsize_reg; if (htab[i] == fcode) {
ent = codetab[i];
continue outer_loop;
}
} while (htab[i] >= 0);
}
output(ent, outs);
ent = c;
if (free_ent < maxmaxcode) {
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
} else
cl_block(outs);
}
// Put out the final code.
output(ent, outs);
output(EOFCode, outs);
} // ----------------------------------------------------------------------------
void encode(OutputStream os) throws IOException {
os.write(initCodeSize); // write "initial code size" byte remaining = imgW * imgH; // reset navigation variables
curPixel = 0; compress(initCodeSize + 1, os); // compress and write the pixel data os.write(0); // write block terminator
} // Flush the packet to disk, and reset the accumulator
void flush_char(OutputStream outs) throws IOException {
if (a_count > 0) {
outs.write(a_count);
outs.write(accum, 0, a_count);
a_count = 0;
}
} final int MAXCODE(int n_bits) {
return (1 << n_bits) - 1;
} // ----------------------------------------------------------------------------
// Return the next pixel from the image
// ----------------------------------------------------------------------------
private int nextPixel() {
if (remaining == 0)
return EOF; --remaining; byte pix = pixAry[curPixel++]; return pix & 0xff;
} void output(int code, OutputStream outs) throws IOException {
cur_accum &= masks[cur_bits]; if (cur_bits > 0)
cur_accum |= (code << cur_bits);
else
cur_accum = code; cur_bits += n_bits; while (cur_bits >= 8) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
} // If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg) {
if (clear_flg) {
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
} else {
++n_bits;
if (n_bits == maxbits)
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
} if (code == EOFCode) {
// At EOF, write the rest of the buffer.
while (cur_bits > 0) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
} flush_char(outs);
}
}
}
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferInt;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.util.ArrayList; public class GifDecoder { /**
* File read status: No errors.
*/
public static final int STATUS_OK = 0; /**
* File read status: Error decoding file (may be partially decoded)
*/
public static final int STATUS_FORMAT_ERROR = 1; /**
* File read status: Unable to open source.
*/
public static final int STATUS_OPEN_ERROR = 2; protected BufferedInputStream in;
protected int status; protected int width; // full image width
protected int height; // full image height
protected boolean gctFlag; // global color table used
protected int gctSize; // size of global color table
protected int loopCount = 1; // iterations; 0 = repeat forever protected int[] gct; // global color table
protected int[] lct; // local color table
protected int[] act; // active color table protected int bgIndex; // background color index
protected int bgColor; // background color
protected int lastBgColor; // previous bg color
protected int pixelAspect; // pixel aspect ratio protected boolean lctFlag; // local color table flag
protected boolean interlace; // interlace flag
protected int lctSize; // local color table size protected int ix, iy, iw, ih; // current image rectangle
protected Rectangle lastRect; // last image rect
protected BufferedImage image; // current frame
protected BufferedImage lastImage; // previous frame protected byte[] block = new byte[256]; // current data block
protected int blockSize = 0; // block size // last graphic control extension info
protected int dispose = 0;
// 0=no action; 1=leave in place; 2=restore to bg; 3=restore to prev
protected int lastDispose = 0;
protected boolean transparency = false; // use transparent color
protected int delay = 0; // delay in milliseconds
protected int transIndex; // transparent color index protected static final int MaxStackSize = 4096;
// max decoder pixel stack size // LZW decoder working arrays
protected short[] prefix;
protected byte[] suffix;
protected byte[] pixelStack;
protected byte[] pixels; protected ArrayList frames; // frames read from current file
protected int frameCount; static class GifFrame {
public GifFrame(BufferedImage im, int del) {
image = im;
delay = del;
} public BufferedImage image;
public int delay;
} /**
* Gets display duration for specified frame.
*
* @param n int index of frame
* @return delay in milliseconds
*/
public int getDelay(int n) {
//
delay = -1;
if ((n >= 0) && (n < frameCount)) {
delay = ((GifFrame) frames.get(n)).delay;
}
return delay;
} /**
* Gets the number of frames read from file.
*
* @return frame count
*/
public int getFrameCount() {
return frameCount;
} /**
* Gets the first (or only) image read.
*
* @return BufferedImage containing first frame, or null if none.
*/
public BufferedImage getImage() {
return getFrame(0);
} /**
* Gets the "Netscape" iteration count, if any.
* A count of 0 means repeat indefinitiely.
*
* @return iteration count if one was specified, else 1.
*/
public int getLoopCount() {
return loopCount;
} /**
* Creates new frame image from current data (and previous
* frames as specified by their disposition codes).
*/
protected void setPixels() {
// expose destination image's pixels as int array
int[] dest =
((DataBufferInt) image.getRaster().getDataBuffer()).getData(); // fill in starting image contents based on last image's dispose code
if (lastDispose > 0) {
if (lastDispose == 3) {
// use image before last
int n = frameCount - 2;
if (n > 0) {
lastImage = getFrame(n - 1);
} else {
lastImage = null;
}
} if (lastImage != null) {
int[] prev =
((DataBufferInt) lastImage.getRaster().getDataBuffer()).getData();
System.arraycopy(prev, 0, dest, 0, width * height);
// copy pixels if (lastDispose == 2) {
// fill last image rect area with background color
Graphics2D g = image.createGraphics();
Color c = null;
if (transparency) {
c = new Color(0, 0, 0, 0); // assume background is transparent
} else {
c = new Color(lastBgColor); // use given background color
}
g.setColor(c);
g.setComposite(AlphaComposite.Src); // replace area
g.fill(lastRect);
g.dispose();
}
}
} // copy each source line to the appropriate place in the destination
int pass = 1;
int inc = 8;
int iline = 0;
for (int i = 0; i < ih; i++) {
int line = i;
if (interlace) {
if (iline >= ih) {
pass++;
switch (pass) {
case 2:
iline = 4;
break;
case 3:
iline = 2;
inc = 4;
break;
case 4:
iline = 1;
inc = 2;
}
}
line = iline;
iline += inc;
}
line += iy;
if (line < height) {
int k = line * width;
int dx = k + ix; // start of line in dest
int dlim = dx + iw; // end of dest line
if ((k + width) < dlim) {
dlim = k + width; // past dest edge
}
int sx = i * iw; // start of line in source
while (dx < dlim) {
// map color and insert in destination
int index = ((int) pixels[sx++]) & 0xff;
int c = act[index];
if (c != 0) {
dest[dx] = c;
}
dx++;
}
}
}
} /**
* Gets the image contents of frame n.
*
* @return BufferedImage representation of frame, or null if n is invalid.
*/
public BufferedImage getFrame(int n) {
BufferedImage im = null;
if ((n >= 0) && (n < frameCount)) {
im = ((GifFrame) frames.get(n)).image;
}
return im;
} /**
* Gets image size.
*
* @return GIF image dimensions
*/
public Dimension getFrameSize() {
return new Dimension(width, height);
} /**
* Reads GIF image from stream
*
* @param BufferedInputStream containing GIF file.
* @return read status code (0 = no errors)
*/
public int read(BufferedInputStream is) {
init();
if (is != null) {
in = is;
readHeader();
if (!err()) {
readContents();
if (frameCount < 0) {
status = STATUS_FORMAT_ERROR;
}
}
} else {
status = STATUS_OPEN_ERROR;
}
try {
is.close();
} catch (IOException e) {
}
return status;
} /**
* Reads GIF image from stream
*
* @param InputStream containing GIF file.
* @return read status code (0 = no errors)
*/
public int read(InputStream is) {
init();
if (is != null) {
if (!(is instanceof BufferedInputStream))
is = new BufferedInputStream(is);
in = (BufferedInputStream) is;
readHeader();
if (!err()) {
readContents();
if (frameCount < 0) {
status = STATUS_FORMAT_ERROR;
}
}
} else {
status = STATUS_OPEN_ERROR;
}
try {
is.close();
} catch (IOException e) {
}
return status;
} /**
* Reads GIF file from specified file/URL source
* (URL assumed if name contains ":/" or "file:")
*
* @param name String containing source
* @return read status code (0 = no errors)
*/
public int read(String name) {
status = STATUS_OK;
try {
name = name.trim().toLowerCase();
if ((name.indexOf("file:") >= 0) ||
(name.indexOf(":/") > 0)) {
URL url = new URL(name);
in = new BufferedInputStream(url.openStream());
} else {
in = new BufferedInputStream(new FileInputStream(name));
}
status = read(in);
} catch (IOException e) {
status = STATUS_OPEN_ERROR;
} return status;
} /**
* Decodes LZW image data into pixel array.
* Adapted from John Cristy's ImageMagick.
*/
protected void decodeImageData() {
int NullCode = -1;
int npix = iw * ih;
int available,
clear,
code_mask,
code_size,
end_of_information,
in_code,
old_code,
bits,
code,
count,
i,
datum,
data_size,
first,
top,
bi,
pi; if ((pixels == null) || (pixels.length < npix)) {
pixels = new byte[npix]; // allocate new pixel array
}
if (prefix == null) prefix = new short[MaxStackSize];
if (suffix == null) suffix = new byte[MaxStackSize];
if (pixelStack == null) pixelStack = new byte[MaxStackSize + 1]; // Initialize GIF data stream decoder. data_size = read();
clear = 1 << data_size;
end_of_information = clear + 1;
available = clear + 2;
old_code = NullCode;
code_size = data_size + 1;
code_mask = (1 << code_size) - 1;
for (code = 0; code < clear; code++) {
prefix[code] = 0;
suffix[code] = (byte) code;
} // Decode GIF pixel stream. datum = bits = count = first = top = pi = bi = 0; for (i = 0; i < npix; ) {
if (top == 0) {
if (bits < code_size) {
// Load bytes until there are enough bits for a code.
if (count == 0) {
// Read a new data block.
count = readBlock();
if (count <= 0)
break;
bi = 0;
}
datum += (((int) block[bi]) & 0xff) << bits;
bits += 8;
bi++;
count--;
continue;
} // Get the next code. code = datum & code_mask;
datum >>= code_size;
bits -= code_size; // Interpret the code if ((code > available) || (code == end_of_information))
break;
if (code == clear) {
// Reset decoder.
code_size = data_size + 1;
code_mask = (1 << code_size) - 1;
available = clear + 2;
old_code = NullCode;
continue;
}
if (old_code == NullCode) {
pixelStack[top++] = suffix[code];
old_code = code;
first = code;
continue;
}
in_code = code;
if (code == available) {
pixelStack[top++] = (byte) first;
code = old_code;
}
while (code > clear) {
pixelStack[top++] = suffix[code];
code = prefix[code];
}
first = ((int) suffix[code]) & 0xff; // Add a new string to the string table, if (available >= MaxStackSize)
break;
pixelStack[top++] = (byte) first;
prefix[available] = (short) old_code;
suffix[available] = (byte) first;
available++;
if (((available & code_mask) == 0)
&& (available < MaxStackSize)) {
code_size++;
code_mask += available;
}
old_code = in_code;
} // Pop a pixel off the pixel stack. top--;
pixels[pi++] = pixelStack[top];
i++;
} for (i = pi; i < npix; i++) {
pixels[i] = 0; // clear missing pixels
} } /**
* Returns true if an error was encountered during reading/decoding
*/
protected boolean err() {
return status != STATUS_OK;
} /**
* Initializes or re-initializes reader
*/
protected void init() {
status = STATUS_OK;
frameCount = 0;
frames = new ArrayList();
gct = null;
lct = null;
} /**
* Reads a single byte from the input stream.
*/
protected int read() {
int curByte = 0;
try {
curByte = in.read();
} catch (IOException e) {
status = STATUS_FORMAT_ERROR;
}
return curByte;
} /**
* Reads next variable length block from input.
*
* @return number of bytes stored in "buffer"
*/
protected int readBlock() {
blockSize = read();
int n = 0;
if (blockSize > 0) {
try {
int count = 0;
while (n < blockSize) {
count = in.read(block, n, blockSize - n);
if (count == -1)
break;
n += count;
}
} catch (IOException e) {
} if (n < blockSize) {
status = STATUS_FORMAT_ERROR;
}
}
return n;
} /**
* Reads color table as 256 RGB integer values
*
* @param ncolors int number of colors to read
* @return int array containing 256 colors (packed ARGB with full alpha)
*/
protected int[] readColorTable(int ncolors) {
int nbytes = 3 * ncolors;
int[] tab = null;
byte[] c = new byte[nbytes];
int n = 0;
try {
n = in.read(c);
} catch (IOException e) {
}
if (n < nbytes) {
status = STATUS_FORMAT_ERROR;
} else {
tab = new int[256]; // max size to avoid bounds checks
int i = 0;
int j = 0;
while (i < ncolors) {
int r = ((int) c[j++]) & 0xff;
int g = ((int) c[j++]) & 0xff;
int b = ((int) c[j++]) & 0xff;
tab[i++] = 0xff000000 | (r << 16) | (g << 8) | b;
}
}
return tab;
} /**
* Main file parser. Reads GIF content blocks.
*/
protected void readContents() {
// read GIF file content blocks
boolean done = false;
while (!(done || err())) {
int code = read();
switch (code) { case 0x2C: // image separator
readImage();
break; case 0x21: // extension
code = read();
switch (code) {
case 0xf9: // graphics control extension
readGraphicControlExt();
break; case 0xff: // application extension
readBlock();
String app = "";
for (int i = 0; i < 11; i++) {
app += (char) block[i];
}
if (app.equals("NETSCAPE2.0")) {
readNetscapeExt();
} else
skip(); // don't care
break; default: // uninteresting extension
skip();
}
break; case 0x3b: // terminator
done = true;
break; case 0x00: // bad byte, but keep going and see what happens
break; default:
status = STATUS_FORMAT_ERROR;
}
}
} /**
* Reads Graphics Control Extension values
*/
protected void readGraphicControlExt() {
read(); // block size
int packed = read(); // packed fields
dispose = (packed & 0x1c) >> 2; // disposal method
if (dispose == 0) {
dispose = 1; // elect to keep old image if discretionary
}
transparency = (packed & 1) != 0;
delay = readShort() * 10; // delay in milliseconds
transIndex = read(); // transparent color index
read(); // block terminator
} /**
* Reads GIF file header information.
*/
protected void readHeader() {
String id = "";
for (int i = 0; i < 6; i++) {
id += (char) read();
}
if (!id.startsWith("GIF")) {
status = STATUS_FORMAT_ERROR;
return;
} readLSD();
if (gctFlag && !err()) {
gct = readColorTable(gctSize);
bgColor = gct[bgIndex];
}
} /**
* Reads next frame image
*/
protected void readImage() {
ix = readShort(); // (sub)image position & size
iy = readShort();
iw = readShort();
ih = readShort(); int packed = read();
lctFlag = (packed & 0x80) != 0; // 1 - local color table flag
interlace = (packed & 0x40) != 0; // 2 - interlace flag
// 3 - sort flag
// 4-5 - reserved
lctSize = 2 << (packed & 7); // 6-8 - local color table size if (lctFlag) {
lct = readColorTable(lctSize); // read table
act = lct; // make local table active
} else {
act = gct; // make global table active
if (bgIndex == transIndex)
bgColor = 0;
}
int save = 0;
if (transparency) {
save = act[transIndex];
act[transIndex] = 0; // set transparent color if specified
} if (act == null) {
status = STATUS_FORMAT_ERROR; // no color table defined
} if (err()) return; decodeImageData(); // decode pixel data
skip(); if (err()) return; frameCount++; // create new image to receive frame data
image =
new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB_PRE); setPixels(); // transfer pixel data to image frames.add(new GifFrame(image, delay)); // add image to frame list if (transparency) {
act[transIndex] = save;
}
resetFrame(); } /**
* Reads Logical Screen Descriptor
*/
protected void readLSD() { // logical screen size
width = readShort();
height = readShort(); // packed fields
int packed = read();
gctFlag = (packed & 0x80) != 0; // 1 : global color table flag
// 2-4 : color resolution
// 5 : gct sort flag
gctSize = 2 << (packed & 7); // 6-8 : gct size bgIndex = read(); // background color index
pixelAspect = read(); // pixel aspect ratio
} /**
* Reads Netscape extenstion to obtain iteration count
*/
protected void readNetscapeExt() {
do {
readBlock();
if (block[0] == 1) {
// loop count sub-block
int b1 = ((int) block[1]) & 0xff;
int b2 = ((int) block[2]) & 0xff;
loopCount = (b2 << 8) | b1;
}
} while ((blockSize > 0) && !err());
} /**
* Reads next 16-bit value, LSB first
*/
protected int readShort() {
// read 16-bit value, LSB first
return read() | (read() << 8);
} /**
* Resets frame state for reading next image.
*/
protected void resetFrame() {
lastDispose = dispose;
lastRect = new Rectangle(ix, iy, iw, ih);
lastImage = image;
lastBgColor = bgColor;
int dispose = 0;
boolean transparency = false;
int delay = 0;
lct = null;
} protected void skip() {
do {
readBlock();
} while ((blockSize > 0) && !err());
}
}
import javax.imageio.IIOImage;
import javax.imageio.ImageIO;
import javax.imageio.ImageReader;
import javax.imageio.ImageWriter;
import javax.imageio.stream.ImageInputStream;
import javax.imageio.stream.ImageOutputStream;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import java.util.Iterator; /**
* Created by yinjd on 2018/3/7.
*/
public class ImageUtils { public enum IMAGE_FORMAT {
BMP("bmp"),
JPG("jpg"),
WBMP("wbmp"),
JPEG("jpeg"),
PNG("png"),
GIF("gif"); private String value; IMAGE_FORMAT(String value) {
this.value = value;
} public String getValue() {
return value;
} public void setValue(String value) {
this.value = value;
}
} /**
* 获取文件名
*
* @param filePath 文件路径
* @return 文件名
* @throws IOException
*/
public static String getFileName(String filePath) throws IOException {
File file = new File(filePath);
if (!file.exists()) {
throw new IOException("file not exist!");
}
return file.getName();
} /**
* 获取图片格式
*
* @param file 图片文件
* @return 图片格式
*/
public static String getImageFormatName(File file) throws IOException {
String formatName = null;
ImageInputStream iis = ImageIO.createImageInputStream(file);
Iterator<ImageReader> imageReader = ImageIO.getImageReaders(iis);
if (imageReader.hasNext()) {
ImageReader reader = imageReader.next();
formatName = reader.getFormatName();
}
return formatName;
} /**
* 获取某个文件的前缀路径
* <p>
* 不包含文件名的路径
*
* @param file 当前文件对象
* @return
* @throws IOException
*/
public static String getFilePrefixPath(File file) throws IOException {
String path;
if (!file.exists()) {
throw new IOException("file not exist!");
}
String fileName = file.getName();
path = file.getPath().replace(fileName, "");
return path;
} /**
* 获取某个文件的前缀路径
* <p>
* 不包含文件名的路径
*
* @param path 当前文件路径
* @return 不包含文件名的路径
* @throws Exception
*/
public static String getFilePrefixPath(String path) throws Exception {
if (null == path || path.isEmpty()) {
throw new Exception("文件路径为空!");
}
int index = path.lastIndexOf(File.separator);
if (index > 0) {
path = path.substring(0, index + 1);
}
return path;
} /**
* 获取不包含后缀的文件路径(包含.)
*
* @param src
* @return
*/
public static String getPathWithoutSuffix(String src) {
String path = src;
int index = path.lastIndexOf(".");
if (index > 0) {
path = path.substring(0, index + 1);
}
return path;
} /**
* 获取系统支持的图片格式
*/
public static void getOSSupportsStandardImageFormat() {
String[] readerFormatName = ImageIO.getReaderFormatNames();
String[] readerSuffixName = ImageIO.getReaderFileSuffixes();
String[] readerMIMEType = ImageIO.getReaderMIMETypes();
System.out.println("========================= OS supports reader ========================");
System.out.println("OS supports reader format name : " + Arrays.asList(readerFormatName));
System.out.println("OS supports reader suffix name : " + Arrays.asList(readerSuffixName));
System.out.println("OS supports reader MIME type : " + Arrays.asList(readerMIMEType)); String[] writerFormatName = ImageIO.getWriterFormatNames();
String[] writerSuffixName = ImageIO.getWriterFileSuffixes();
String[] writerMIMEType = ImageIO.getWriterMIMETypes(); System.out.println("========================= OS supports writer ========================");
System.out.println("OS supports writer format name : " + Arrays.asList(writerFormatName));
System.out.println("OS supports writer suffix name : " + Arrays.asList(writerSuffixName));
System.out.println("OS supports writer MIME type : " + Arrays.asList(writerMIMEType));
} /**
* 剪切图片
*
* @param sourcePath 待剪切图片路径
* @param targetPath 裁剪后保存路径(默认为源路径)
* @param x 起始横坐标
* @param y 起始纵坐标
* @param width 剪切宽度
* @param height 剪切高度
* @throws IOException
* @returns 裁剪后保存路径(图片后缀根据图片本身类型生成)
*/
public static String cutImage(String sourcePath, String targetPath, int x, int y, int width, int height) throws IOException {
File file = new File(sourcePath);
if (!file.exists()) {
throw new IOException("not found the image:" + sourcePath);
}
if (null == targetPath || targetPath.isEmpty()) {
targetPath = sourcePath;
} String formatName = getImageFormatName(file);
if (null == formatName) {
return targetPath;
}
formatName = formatName.toLowerCase(); // 防止图片后缀与图片本身类型不一致的情况
String pathPrefix = getPathWithoutSuffix(targetPath);
targetPath = pathPrefix + formatName; // GIF需要特殊处理
if (IMAGE_FORMAT.GIF.getValue() == formatName) {
GifDecoder decoder = new GifDecoder();
int status = decoder.read(sourcePath);
if (status != GifDecoder.STATUS_OK) {
throw new IOException("read image " + sourcePath + " error!");
} AnimatedGifEncoder encoder = new AnimatedGifEncoder();
encoder.start(targetPath);
encoder.setRepeat(decoder.getLoopCount());
for (int i = 0; i < decoder.getFrameCount(); i++) {
encoder.setDelay(decoder.getDelay(i));
BufferedImage childImage = decoder.getFrame(i);
BufferedImage image = childImage.getSubimage(x, y, width, height);
encoder.addFrame(image);
}
encoder.finish();
} else {
BufferedImage image = ImageIO.read(file);
image = image.getSubimage(x, y, width, height);
ImageIO.write(image, formatName, new File(targetPath));
}
return targetPath;
} /**
* 压缩图片
*
* @param sourcePath 待压缩的图片路径
* @param targetPath 压缩后图片路径(默认为初始路径)
* @param width 压缩宽度
* @param height 压缩高度
* @throws IOException
* @returns 裁剪后保存路径(图片后缀根据图片本身类型生成)
*/
public static String zoom(String sourcePath, String targetPath, int width, int height) throws IOException {
File file = new File(sourcePath);
if (!file.exists()) {
throw new IOException("not found the image :" + sourcePath);
}
if (null == targetPath || targetPath.isEmpty()) {
targetPath = sourcePath;
}
String formatName = getImageFormatName(file);
if (null == formatName) {
return targetPath;
}
formatName = formatName.toLowerCase(); // 防止图片后缀与图片本身类型不一致,所以重新组合拼接
String pathPrefix = getPathWithoutSuffix(targetPath);
targetPath = pathPrefix + formatName; // GIF需要特殊处理
if (IMAGE_FORMAT.GIF.getValue() == formatName) {
GifDecoder decoder = new GifDecoder();
int status = decoder.read(sourcePath);
if (status != GifDecoder.STATUS_OK) {
throw new IOException("read image " + sourcePath + " error!");
} AnimatedGifEncoder encoder = new AnimatedGifEncoder();
encoder.start(targetPath);
encoder.setRepeat(decoder.getLoopCount());
for (int i = 0; i < decoder.getFrameCount(); i++) {
encoder.setDelay(decoder.getDelay(i));
BufferedImage image = zoom(decoder.getFrame(i), width, height);
encoder.addFrame(image);
}
encoder.finish();
} else {
BufferedImage image = ImageIO.read(file);
BufferedImage zoomImage = zoom(image, width, height);
ImageIO.write(zoomImage, formatName, new File(targetPath));
}
return targetPath;
} /**
* 读取图片
*
* @param file 图片文件
* @return 图片数据
* @throws IOException
*/
private static BufferedImage[] readerImage(File file) throws IOException {
BufferedImage sourceImage = ImageIO.read(file);
BufferedImage[] images = null;
ImageInputStream iis = ImageIO.createImageInputStream(file);
Iterator<ImageReader> imageReaders = ImageIO.getImageReaders(iis);
if (imageReaders.hasNext()) {
ImageReader reader = imageReaders.next();
reader.setInput(iis);
int imageNumber = reader.getNumImages(true);
images = new BufferedImage[imageNumber];
for (int i = 0; i < imageNumber; i++) {
BufferedImage image = reader.read(i);
if (sourceImage.getWidth() > image.getWidth() || sourceImage.getHeight() > image.getHeight()) {
image = zoom(image, sourceImage.getWidth(), sourceImage.getHeight());
}
images[i] = image;
}
reader.dispose();
iis.close();
}
return images;
} /**
* 根据要求处理图片
*
* @param images 图片数组
* @param x 横向起始位置
* @param y 纵向起始位置
* @param width 宽度
* @param height 宽度
* @return 处理后的图片数组
* @throws Exception
*/
private static BufferedImage[] processImage(BufferedImage[] images, int x, int y, int width, int height) throws Exception {
if (null == images) {
return images;
}
BufferedImage[] oldImages = images;
images = new BufferedImage[images.length];
for (int i = 0; i < oldImages.length; i++) {
BufferedImage image = oldImages[i];
images[i] = image.getSubimage(x, y, width, height);
}
return images;
} /**
* 写入处理后的图片到file
* <p>
* 图片后缀根据图片格式生成
*
* @param images 处理后的图片数据
* @param formatName 图片格式
* @param file 写入文件对象
* @throws Exception
*/
private static void writerImage(BufferedImage[] images, String formatName, File file) throws Exception {
Iterator<ImageWriter> imageWriters = ImageIO.getImageWritersByFormatName(formatName);
if (imageWriters.hasNext()) {
ImageWriter writer = imageWriters.next();
String fileName = file.getName();
int index = fileName.lastIndexOf(".");
if (index > 0) {
fileName = fileName.substring(0, index + 1) + formatName;
}
String pathPrefix = getFilePrefixPath(file.getPath());
File outFile = new File(pathPrefix + fileName);
ImageOutputStream ios = ImageIO.createImageOutputStream(outFile);
writer.setOutput(ios); if (writer.canWriteSequence()) {
writer.prepareWriteSequence(null);
for (int i = 0; i < images.length; i++) {
BufferedImage childImage = images[i];
IIOImage image = new IIOImage(childImage, null, null);
writer.writeToSequence(image, null);
}
writer.endWriteSequence();
} else {
for (int i = 0; i < images.length; i++) {
writer.write(images[i]);
}
} writer.dispose();
ios.close();
}
} /**
* 剪切格式图片
* <p>
* 基于JDK Image I/O解决方案
*
* @param sourceFile 待剪切图片文件对象
* @param destFile 裁剪后保存文件对象
* @param x 剪切横向起始位置
* @param y 剪切纵向起始位置
* @param width 剪切宽度
* @param height 剪切宽度
* @throws Exception
*/
public static void cutImage(File sourceFile, File destFile, int x, int y, int width, int height) throws Exception {
// 读取图片信息
BufferedImage[] images = readerImage(sourceFile);
// 处理图片
images = processImage(images, x, y, width, height);
// 获取文件后缀
String formatName = getImageFormatName(sourceFile);
destFile = new File(getPathWithoutSuffix(destFile.getPath()) + formatName); // 写入处理后的图片到文件
writerImage(images, formatName, destFile);
} /**
* 压缩图片
*
* @param sourceImage 待压缩图片
* @param width 压缩图片高度
* @param height 压缩图片宽度
*/
public static BufferedImage zoom(BufferedImage sourceImage, int width, int height) {
Image image = sourceImage.getScaledInstance(width, height, Image.SCALE_SMOOTH);
BufferedImage zoomImage = new BufferedImage(width, height, sourceImage.getType());
Graphics gc = zoomImage.getGraphics();
gc.setColor(Color.WHITE);
gc.drawImage(image, 0, 0, null);
return zoomImage;
} /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception { try {
String filePath = "/Users/*/Desktop/images/CC_src_1242x2208.gif";
String prefixPath = "/Users/*/Desktop/images/dest/";
String destPath;
File ccFile = new File(filePath);
if (!ccFile.exists()) {
throw new IOException("not found the image :" + filePath);
}
int loopCount = 500;
long start = System.currentTimeMillis(); for (int i = 0; i < loopCount; i++) {
destPath = prefixPath + "CC_des_" + i + ".gif";
zoom(filePath, destPath, 300, 600);
}
long end = System.currentTimeMillis();
System.out.println("开始于" + start + ", 结束于" + end + ", 平均用时" + (end - start) / loopCount + "毫秒.");
} catch (Exception e) {
e.printStackTrace();
}
}
}
Gif动图压缩java版的更多相关文章
- HighChartS cpu利用率动态图(Java版)
来源:http://www.cnblogs.com/haifg/p/3217699.html 最近项目需要监控服务器cpu的利用率,并做成动态图.在网上查找了一些资料,最终选择了HighChart ...
- 腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践
本文来自腾讯前端开发工程师“ wendygogogo”的技术分享,作者自评:“在Web前端摸爬滚打的码农一枚,对技术充满热情的菜鸟,致力为手Q的建设添砖加瓦.” 1.GIF格式的历史 GIF ( Gr ...
- Java 虚拟机系列二:垃圾收集机制详解,动图帮你理解
前言 上篇文章已经给大家介绍了 JVM 的架构和运行时数据区 (内存区域),本篇文章将给大家介绍 JVM 的重点内容--垃圾收集.众所周知,相比 C / C++ 等语言,Java 可以省去手动管理内存 ...
- 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...
- 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...
- 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...
- 八大排序算法——基数排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演 二.思路分析 基数排序第i趟将待排数组里的每个数的i位数放到tempj(j=1-10)队列中,然后再从这十个队列中取出数据,重新放到原数组里,直到i大于待排数的最大位数. 1.数组里的数最 ...
- 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1. 向上归并排序的时候,需要一个暂存数组用来排序, 2. 将 ...
- 八大排序算法——快速排序(动图演示 思路分析 实例代码Java 复杂度分析)
一.动图演示 二.思路分析 快速排序的思想就是,选一个数作为基数(这里我选的是第一个数),大于这个基数的放到右边,小于这个基数的放到左边,等于这个基数的数可以放到左边或右边,看自己习惯,这里我是放到了 ...
随机推荐
- 【BootStrap】--具有增删改查功能的表格Demo
[BootStrap]--具有增删改查功能的表格Demo 目录(?)[+] 前言 版本一 样式 代码 版本二 样式 代码 版本三 样式 代码 总结 前言 bootstrap的表格样式,有类似EasyU ...
- laravel重定向到上一个页面怎么带参数返回 withsucess 成功提示信息
//控制器中 return back()->with('success','操作成功'); //with的参数1是一个session变量名,参数2为该session变量值,在视图直接这样获取 @ ...
- laravel5.4 前后台未登陆,跳转到各自的页面
https://www.imooc.com/wenda/detail/378208?t=266634 laravel我做了前后台登陆,后台未登录跳转到前台登陆页面了. 我想让后台未登入跳转到后台登陆页 ...
- CSS属性Display(显示)和Visibility(可见性)
隐藏一个元素可以通过把display属性设置为“none”,或把visibility属性设置为“hidden”.但是请注意,这两种方法会产生不同的效果. Visibility:hidden可以隐藏某个 ...
- 2019-8-31-PowerShell-通过-WMI-获取系统信息
title author date CreateTime categories PowerShell 通过 WMI 获取系统信息 lindexi 2019-08-31 16:55:58 +0800 2 ...
- html前端登录验证
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- CODE FESTIVAL 2017 qual A C Palindromic Matrix(补题)
彩笔看到题目后,除了懵逼,没有啥反应了,唯一想的就是 这是不是dp啊?看了题解才发现,原来是这样啊. 画几个矩阵看看就能看出来规律. 思路:先假设这是个M * N的矩阵 如果M和N都是偶数,则每个出现 ...
- supersockets多个 listener
你可以增加一个子节点 "listeners" 用于添加多对监听 ip/port: <superSocket> <servers> <server na ...
- 析构函数 p157
析构函数 确保对象的各部分被正确的清除,及做一些用户指定的其他清理工作. 当对象超出它的作用域时,编译器将自动调用析构函数:手动用new在堆上分配的对象空间,需要调用'delete 对象地址'进行手动 ...
- 插播一条 WMI修复教程
一般情况下,WMI都会好好的工作,但偶尔也会出现小问题. 这些小问题会影响到正在使用WMI的程序,比如设置的有线和无线网络依然还是依赖WMI的.如果WMI自己都没办法工作,有些数据就获取不到了. 先看 ...