Technocup 2020 Elimination Round 3题解
\(A\)
曲明连sb模拟不会做,拖出去埋了算了
//quming
#include<bits/stdc++.h>
#define R register
#define fi first
#define se second
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef pair<int,int> pi;
const int N=2005;
char s[N];int n,k,top,T;pi st[N];
void find(int pos,int c){
if(s[pos]==c)return;
fp(i,pos+1,n)if(s[i]==c){
st[++top]=pi(pos,i),reverse(s+pos,s+i+1);
return;
}
}
int main(){
for(scanf("%d",&T);T;--T){
scanf("%d%d",&n,&k),top=0,--k;
scanf("%s",s+1);
fp(i,1,k<<1)find(i,(i&1)?'(':')');
R int sz=n-(k<<1);
fp(i,1,sz)find(i+(k<<1),i<=sz?'(':')');
printf("%d\n",top);
fp(i,1,top)printf("%d %d\n",st[i].fi,st[i].se);
}
return 0;
}
\(B\)
离线之后sort一下依次加入每个元素,每次查询\(k\)大值就行了,我抄了个平衡树板子,实际上二分+树状数组就行了
//quming
#include<bits/stdc++.h>
#define R register
#define pb push_back
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
unsigned int aaa=19260817;
inline unsigned int rd(){aaa^=aaa>>15,aaa+=aaa<<12,aaa^=aaa>>3;return aaa;}
const int N=2e5+5;
struct node;typedef node* ptr;
struct node{
ptr lc,rc;int v,sz;unsigned int pr;
inline void init(R int val){v=val,pr=rd(),sz=1;}
inline ptr upd(){return sz=lc->sz+rc->sz+1,this;}
}e[N],*rt=e;int tot;
inline ptr newnode(R int v){return e[++tot].init(v),(e+tot)->lc=(e+tot)->rc=e,e+tot;}
void split(ptr p,int k,ptr &s,ptr &t){
if(p==e)return s=t=e,void();
if(p->v<=k)s=p,split(p->rc,k,p->rc,t);
else t=p,split(p->lc,k,s,p->lc);
p->upd();
}
ptr merge(ptr s,ptr t){
if(s==e)return t;if(t==e)return s;
if(s->pr<t->pr)return s->rc=merge(s->rc,t),s->upd();
return t->lc=merge(s,t->lc),t->upd();
}
void insert(int k){
ptr s,t;
split(rt,k,s,t);
rt=merge(merge(s,newnode(k)),t);
}
void erase(int k){
ptr s,t,p;
split(rt,k,s,t),split(s,k-1,s,p),p=merge(p->lc,p->rc);
rt=merge(merge(s,p),t);
}
int rk(int k){
ptr s,t;int now;
split(rt,k-1,s,t);now=s->sz+1;
return rt=merge(s,t),now;
}
int Kth(ptr p,int k){
if(p->lc->sz==k-1)return p->v;
if(p->lc->sz>=k)return Kth(p->lc,k);
return Kth(p->rc,k-p->lc->sz-1);
}
int Pre(int k){
ptr s,t;int now;
split(rt,k-1,s,t),now=Kth(s,s->sz);
return rt=merge(s,t),now;
}
int nxt(int k){
ptr s,t;int now;
split(rt,k,s,t),now=Kth(t,1);
return rt=merge(s,t),now;
}
int a[N],id[N],ak[N],ad[N],ans[N],n,m;
vector<int>qr[N];
int main(){
scanf("%d",&n);
fp(i,1,n)scanf("%d",&a[i]),id[i]=i;
sort(id+1,id+1+n,[](const int &x,const int &y){return a[x]==a[y]?x<y:a[x]>a[y];});
scanf("%d",&m);
fp(i,1,m)scanf("%d%d",&ak[i],&ad[i]),qr[ak[i]].pb(i);
fp(i,1,n){
insert(id[i]);
for(auto v:qr[i])ans[v]=Kth(rt,ad[v]);
}
fp(i,1,m)printf("%d\n",a[ans[i]]);
return 0;
}
\(C\)
曲明连sb二分都不会做,可以拖出去埋了
//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=1e6+5;
char s[N];
vector<int>sm[N],a[N],d[N],g[N];
int n,m,cnt,h,t,l,r,mid,ans;
inline void init(){
fp(i,0,n+1){
sm[i].resize(m+2),
a[i].resize(m+2),
d[i].resize(m+2),
g[i].resize(m+2);
}
}
inline int calc(R int x,R int y,R int xx,R int yy){
return sm[xx][yy]+sm[x-1][y-1]-sm[x-1][yy]-sm[xx][y-1];
}
inline bool ok(R int i,R int j,R int mid){
return calc(i-mid,j-mid,i+mid,j+mid)==(mid<<1|1)*(mid<<1|1);
}
bool ck(){
fp(i,0,n+1)fp(j,0,m+1)g[i][j]=0;
fp(i,mid+1,n-mid)fp(j,mid+1,m-mid)
if(ok(i,j,mid)){
++g[i-mid][j-mid],++g[i+mid+1][j+mid+1];
--g[i-mid][j+mid+1],--g[i+mid+1][j-mid];
}
R int fl=1;
fp(i,1,n)fp(j,1,m){
g[i][j]+=g[i-1][j]+g[i][j-1]-g[i-1][j-1];
if((g[i][j]>0)!=a[i][j])fl=0;
}
return fl;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);init();
fp(i,1,n){
scanf("%s",s+1);
fp(j,1,m){
a[i][j]=(s[j]=='X');
sm[i][j]=sm[i-1][j]+sm[i][j-1]-sm[i-1][j-1]+a[i][j];
}
}
l=0,r=min(n+1,m+1)>>1,ans=0;
while(l<=r){
mid=(l+r)>>1;
ck()?(ans=mid,l=mid+1):r=mid-1;
}
printf("%d\n",ans);
fp(i,1,n)fp(j,1,m)d[i][j]=0;
fp(i,ans+1,n-ans)fp(j,ans+1,m-ans)d[i][j]=ok(i,j,ans);
fp(i,1,n){
fp(j,1,m)putchar(d[i][j]?'X':'.');
putchar('\n');
}
return 0;
}
\(D\)
记一个\(c\),考虑每个\(i\),如果\(a_i=h_i\)令\(--c\),如果\(a_i=h_{i+1}\)令\(++c\),相当于求最终\(c>0\)的方案,那么根据\(h_i\)和\(h_{i+1}\)是否相等判断一下\(a_i\)对\(c\)的贡献写出生成函数,手动多项式快速幂就行了
//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int P=998244353;
inline void upd(R int &x,R int y){(x+=y)>=P?x-=P:0;}
inline int inc(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
const int N=(1<<19)+5;
int rt[2][N],r[21][N],inv[21],lg[N],lim,d;
void init(){
fp(d,1,19){
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
inv[d]=ksm(1<<d,P-2),lg[1<<d]=d;
}
for(R int t=(P-1)>>1,i=1,x,y;i<524288;t>>=1,i<<=1){
x=ksm(3,t),y=ksm(332748118,t),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1){
rt[0][i+k]=mul(rt[0][i+k-1],x);
rt[1][i+k]=mul(rt[1][i+k-1],y);
}
}
}
void NTT(int *A,int ty){
int t;
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
fp(k,0,mid-1){
A[j+k+mid]=inc(A[j+k],P-(t=mul(A[j+k+mid],rt[ty][mid+k])));
upd(A[j+k],t);
}
if(!ty){
t=inv[d];
fp(i,0,lim-1)A[i]=mul(A[i],t);
}
}
int A[N],a[N];
int n,k,res,coef,cnt;
int main(){
// freopen("testdata.in","r",stdin);
init();
scanf("%d%d",&n,&k);
fp(i,1,n)scanf("%d",&a[i]);
a[n+1]=a[1];
fp(i,1,n)++(a[i]==a[i+1]?coef:cnt);
if(coef==n)return puts("0"),0;
coef=ksm(k%P,coef);
A[0]=A[2]=1,A[1]=(k-2)%P;
lim=1,d=0;while(lim<=(cnt<<1))lim<<=1,++d;
NTT(A,1);
fp(i,0,lim-1)A[i]=ksm(A[i],cnt);
NTT(A,0);
fp(i,cnt+1,(cnt<<1))upd(res,A[i]);
printf("%d\n",mul(res,coef));
return 0;
}
\(E\)
首先默认\(a_i\leq a_{i+1}\),并且默认\(a_i\leq n-1\)
这样的话我们就可以有一种放法,对于一个\(n\times n\)的网格,强制副对角线上所有格子不能放元素,然后每一列都从这一列的副对角线格子上方开始放起,这样由于\(a_i\leq a_{i+1}\),所以相邻两列的放了元素的格子的顶端一定不同
大概长这样,红色表示不能放,黑色表示放了的格子,\(a_2=a_3=a_4=2\),但它们的顶端各不相同
这样的话我们可以证明任意两行一定不同
如果有的元素满足\(a_i=n\),然后我们直接把它的第\(n\)个元素扔到第\(n+1\)行,有可能出现的一个问题就是第\(n\)行和第\(n+1\)行相等。一种解决办法就是我们找到第\(n+1\)行的黑格子的左边界,记为\(i\),由于\(i\)是左边界,那么第\(n\)行里第\(i-1\)个格子一定是白的,我们把第\(n+1\)行第\(i\)个格子和第\(i\)列副对角线上那个格子交换,容易证明这样之后依然是合法的
//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=1005;
int mp[N][N],a[N],id[N],n;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
fp(i,1,n)scanf("%d",&a[i]),id[i]=i;
sort(id+1,id+1+n,[](const int &x,const int &y){return a[x]<a[y];});
fd(i,n,1)for(R int j=n-i,k=1;k<=min(n-1,a[id[i]]);++k,--j){
if(!j)j=n;
mp[j][id[i]]=1;
}
fp(i,1,n)if(a[i]==n)mp[n+1][i]=1;
R bool fl=1;
fp(i,1,n)if(mp[n][i]!=mp[n+1][i]){fl=0;break;}
if(fl){
// puts("QAQ");
fd(i,n,1)if(a[id[i]]==n&&a[id[i-1]]!=n){
mp[n+1][id[i]]=0,mp[n-i+1][id[i]]=1;
break;
}
}
printf("%d\n",n+1);
fp(i,1,n+1){
fp(j,1,n)putchar(mp[i][j]+'0');
putchar('\n');
}
return 0;
}
\(F\)
我们把所有的线段都拆成形如\([x,x+2^k-1]\)的样子,其中\(x\)的二进制的\(0\)到\(k-1\)位全都为\(0\),对于一条原来的线段,拆掉它之后产生的所有线段其实就是\(l\)和\(r\)的trie树上的路径的所有儿子,所以我们可以证明拆完之后总线段数是\(O(n\times 60)\)的
对于两条形如\([x,x+2^k-1]\)和\([y,y+2^g-1]\)的线段,假设\(k<g\),并设\(p=x\oplus y\)的前\(59-g\)位,我们发现这两条线段可以异或出\([p,p+2^g-1]\)之间的所有数字,而且\(p\)是一个固定的前缀。所以我们可以枚举所有合法的线段,而最终的贡献就相当于trie树的一个子树全部合法,打上标记就行了,最后在trie树上dfs一遍就行了,总复杂度\(O(n^260^3)\),卡一卡就能过
//quming
#include<bits/stdc++.h>
#define R register
#define fi first
#define se second
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int P=998244353;
inline void upd(R int &x,R int y){(x+=y)>=P?x-=P:0;}
inline int inc(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
typedef long long ll;
typedef pair<ll,int> pi;
typedef pair<ll,ll> ppi;
const int N=200005;
int n,na,nb,top;pi sa[N],sb[N];ppi st[N];
void get(){
scanf("%d",&n);
fp(i,1,n)scanf("%lld%lld",&st[i].fi,&st[i].se);
sort(st+1,st+1+n,[](const ppi &a,const ppi &b){return a.fi<b.fi;});
top=1;
fp(i,2,n)if(st[i].fi<=st[top].se+1)cmax(st[top].se,st[i].se);
else st[++top]=st[i];
}
void build(pi *s,int &n,ll l,ll r){
for(R ll i=l,p=0;i<=r;i+=(1ll<<p)){
while((i>>p&1^1)&&(i+(1ll<<(p+1))-1)<=r)++p;
while(p&&(i+(1ll<<p)-1)>r)--p;
s[++n]=pi(i,p);
}
}
const int M=1e7+5;
int ch[M][2],vis[M],bin[233],nd,res;
void ins(R ll x,int k){
R int p=0,c;
fd(i,59,k){
c=(x>>i&1);
if(!ch[p][c])ch[p][c]=++nd;
if(vis[p=ch[p][c]])return;
}
vis[p]=1;
}
void dfs(int p,int pos,int coef){
if(vis[p]){
upd(res,mul(coef,bin[pos+1]));
upd(res,mul(bin[pos+1]-1,bin[pos]));
return;
}
if(ch[p][0])dfs(ch[p][0],pos-1,coef);
if(ch[p][1])dfs(ch[p][1],pos-1,inc(coef,bin[pos]));
}
int main(){
// freopen("testdata.in","r",stdin);
get();
fp(i,1,top)build(sa,na,st[i].fi,st[i].se);
get();
fp(i,1,top)build(sb,nb,st[i].fi,st[i].se);
bin[0]=1;fp(i,1,60)bin[i]=mul(bin[i-1],2);
sort(sa+1,sa+1+na,[](const pi &a,const pi &b){return a.se>b.se;});
sort(sb+1,sb+1+nb,[](const pi &a,const pi &b){return a.se>b.se;});
fp(i,1,na)fp(j,1,nb)ins(sa[i].fi^sb[j].fi,max(sa[i].se,sb[j].se));
dfs(0,59,0);
printf("%lld\n",res);
return 0;
}
Technocup 2020 Elimination Round 3题解的更多相关文章
- Codeforces Round #606 (Div. 2, based on Technocup 2020 Elimination Round 4) 题解
Happy Birthday, Polycarp! Make Them Odd As Simple as One and Two Let's Play the Words? Two Fairs Bea ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) 题解
A..B略 C 对当前的值排序,再二分答案,然后对于(i%x==0 && i%y==0)放入大的,再放其他的贪心解决即可. #include<iostream> #incl ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- 20191214 Codeforces Round #606 (Div. 2, based on Technocup 2020 Elimination Round 4)
概述 切了 ABCE,Room83 第一 还行吧 A - Happy Birthday, Polycarp! 题解 显然这样的数不会很多. 于是可以通过构造法,直接求出 \([1,10^9]\) 内所 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心
B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...
随机推荐
- SQL Server优化之SET STATISTICS开关(转载)
一.准备工作 缓存对于某个查询的性能影响十分之大,所以优化之前要清空缓存. 清除Buffer Pool里面的所有缓存 DBCC DROPCLEANBUFFERS 清除Buffer Pool里的所有缓存 ...
- php 无限极分类,根据父级 找子级
/** * @param $data 数据(二维数组格式) * @param $adminId 管理员ID * @param $pid 权限的上级ID * @param int $level 水平变量 ...
- java面试经常涉及到的
需要掌握的Java知识点: 1 基本数据类型.循环控制.String类型的使用.数组.类和对象.接口和抽象类.面向对象三大特征.异常处理.集合类(List.Map.Set) 2 能够熟练使用Sprin ...
- Ubuntu 下安装zsh和oh-my-zsh
注意:安装前先备份/etc/passwd 一开始装oh-my-zsh我是拒绝的,因为这东西安装容易,卸载难,真的很难. Mac安装参考:http://www.cnblogs.com/EasonJim/ ...
- spark任务分配----TaskSchedulerImpl源码解析
TaskSchedulerImpl 上一篇讲到DAGScheduler根据shuffle依赖对作业的整个计算链划分成多个stage之后,就开始提交最后一个ResultStage,而由于stage之间的 ...
- io详解
1.io类
- 【优化】COUNT(1)、COUNT(*)、COUNT(常量)、COUNT(主键)、COUNT(ROWID)、COUNT(非空列)、COUNT(允许为空列)、COUNT(DISTINCT 列名)
[优化]COUNT(1).COUNT(*).COUNT(常量).COUNT(主键).COUNT(ROWID).COUNT(非空列).COUNT(允许为空列).COUNT(DISTINCT 列名) 1. ...
- Linux命令groupadd
groupadd [选项] 组 创建一个新的组.Groupadd命令使用命令行中指定的值加上系统默认值创建新的组账户.新组将根据需要输入系统. (1).选项 -f,--force 如果指定的组已经存在 ...
- 【Git版本控制】为什么要先commit,然后pull,最后再push?而不是commit然后直接push?
情况是这样的,现在远程有一个仓库,分支就一个,是master.然后我本地的仓库是从远程的master上clone下来的.大家都是clone下来,再在自己本地改好,再commit然后pull然后push ...
- Vmware克隆Centos6.5虚拟机网卡无法启动问题
1.编辑eth0的配置文件:vi /etc/sysconfig/network-scripts/ifcfg-eth0,删除HWADDR地址那一行及UUID的行如下: #HWADDR=:0c::::9f ...