【牛客】路径计数机 (树形dp 前缀和)
题目描述
有一棵n个点的树和两个整数p, q,求满足以下条件的四元组(a, b, c, d)的个数:
1.$1\leq a,b,c,d \leq n$
2.点a到点b的经过的边数为p。
3.点c到点d的经过的边数为q。
4.不存在一个点,它既在点a到点b的路径上,又在点c到点d的路径上。
输入描述
第一行三个整数n,p,q。
接下来n - 1行,每行两个整数u, v,表示树上存在一个连接点u和点v的边。
输出描述
输出一个整数,表示答案。
示例1
输入
5 2 1
1 2
2 3
3 4
2 5
输出
4
说明
合法的四元组一共有:
(1, 5, 3, 4),
(1, 5, 4, 3),
(5, 1, 3 ,4),
(5, 1, 4, 3)。
示例2
输入
4 1 1
1 2
2 3
3 4
输出
8
备注:
对于前20%的数据,n,p,q≤50。
对于前40%的数据,n,p,q≤200。
对于另外10%的数据,p = 2, q = 2。
对于另外10%的数据,树是一条链。
对于另外10%的数据,树随机生成。
对于所有数据1≤n,p,q≤3000,1≤u,v≤n,保证给出的是一棵合法的树。
分析
我已经弱到连$n^2$枚举路径都不会了
再一次求助Master_Yi
这个题只要理顺了就挺好想的了(说得好像我想得出来似的。
由于不相交的情况不好求,所直接看相交的情况。
找规律可以发现,如果两条路径相交,其中必有一条路径两个端点的lca在另一条路径上
所有可以枚举长度为p的路径,减去在以这条路径上的点为端点lca的长度为q的路径
然后又枚举长度为q的路径,减去在以这条路径上的点为端点lca的长度为p的路径
发现当路径端点lca相同的情况被多算了一次,于是就加回来
那么如何实现呢?
设sq[x],sp[x]分别表示以x为端点lca,长度为q和长度为p的路径条数
枚举路径是$n^2$的,如果不能优化的话,那么我们现在需要的是快速求出一条路径上的sq或sp和
现在要求的是一条路径的和,一个一个找点肯定会T,所以可以预处理一些东西能让我们能够拼凑出答案
如果预处理从根到某个节点x上的路径的sq之和与sp之和,记为ssq[x]与spp[x]
那么以i,j为两端点的路径中sq和sp之和就为ssq[i]+ssq[j]-ssq[lca[i][j]]-ssq[fa[lca[i][j]]]与ssp[i]+ssp[j]-ssp[lca[i][j]]-ssp[fa[lca[i][j]]]
感觉有些与前缀和类似。。。。。。
这样就可以O(1)计算了,总的时间复杂度就为O(n^2)
跟Master_Yi几乎一样的Code
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
int fa[maxn],dep[maxn],ori[maxn],f[maxn][maxn],lca[maxn][maxn];
int n,p,q,ecnt,Sp,Sq,v[maxn<<],nx[maxn<<],sq[maxn],sp[maxn],vis[maxn],info[maxn];
int find(int x){return !ori[x]?x:ori[x]=find(ori[x]);}
void add(int u1,int v1){nx[++ecnt]=info[u1];info[u1]=ecnt;v[ecnt]=v1;}
void dfs1(int x,int fa)
{
f[x][]=;vis[x]=;for(int i=;i<=n;i++)if(vis[i])lca[x][i]=lca[i][x]=find(i);
for(int e=info[x];e;e=nx[e])if(v[e]!=fa)
{
dfs1(v[e],x);
for(int i=;i<q;i++)sq[x]+=f[x][i]*f[v[e]][q-i-];
for(int i=;i<p;i++)sp[x]+=f[x][i]*f[v[e]][p-i-];
for(int i=;i<max(p,q);i++)f[x][i+]+=f[v[e]][i];
}
ori[x]=fa;Sq+=sq[x];Sp+=sp[x];
}
void dfs2(int x,int f){sq[x]+=sq[f];sp[x]+=sp[f];dep[x]=dep[fa[x]=f]+;for(int e=info[x];e;e=nx[e])if(v[e]!=f)dfs2(v[e],x);}
int main()
{
scanf("%d%d%d",&n,&p,&q);
for(int i=,u1,v1;i<n;i++)scanf("%d%d",&u1,&v1),add(u1,v1),add(v1,u1);
dfs1(,);dfs2(,);long long ans=p!=q?1ll*Sp*Sq:1ll*Sp*(Sq-)/;
for(int i=;i<=n;i++)for(int j=i+;j<=n;j++)
{
int len=dep[i]+dep[j]-*dep[lca[i][j]];
if(len==p&&len==q){ans-=sq[i]+sq[j]-sq[lca[i][j]]-sq[fa[lca[i][j]]]-;continue;}
if(len==p)ans-=sq[i]+sq[j]-sq[lca[i][j]]-sq[fa[lca[i][j]]];
if(len==q)ans-=sp[i]+sp[j]-sp[lca[i][j]]-sp[fa[lca[i][j]]];
}
for(int i=;i<=n;i++)
if(p==q)ans+=1ll*(sp[i]-sp[fa[i]])*(sq[i]-sq[fa[i]]-)/;
else ans+=1ll*(sp[i]-sp[fa[i]])*(sq[i]-sq[fa[i]]);
printf("%lld\n",p==q?ans<<:ans<<);
}
【牛客】路径计数机 (树形dp 前缀和)的更多相关文章
- 牛客练习赛55 E-树 树形DP
题意 你有一颗大小为\(n\)的树,点从\(1\)到\(n\)标号. 设\(dis(x,y)\)表示\(x\)到\(y\)的距离. 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}di ...
- 牛客网华为机试题之Python解法
牛客网华为机试题之Python解法 第1题 字符串最后一个单词的长度 a = input().split(" ") print(len(a[-1])) 第2题 计算字符个数 a = ...
- [BZOJ 1907] 树的路径覆盖 【树形DP】
题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...
- bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】
是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- 牛客练习赛35-背单词-线性DP
背单词 思路 :dp[ i ] [ 0 ]表示 第i 位放的元音 dp[ i ] [ 1 ]表示 第i 位放的辅音 ,cnt [ i ]含义是 长度为 i 的方案数. 转移 :dp[ i ] ...
- 计蒜客 Red Black Tree(树形DP)
You are given a rooted tree with n nodes. The nodes are numbered 1..n. The root is node 1, and m of ...
- bzoj1907: 树的路径覆盖(树形DP)
一眼题... f[i][0]表示在i连接一个子树的最小值,f[i][1]表示在i连接两个子树的最小值,随便转移... 样例挺强的1A了美滋滋... UPD:学习了2314的写法之后短了好多T T #i ...
- BZOJ_2111_[ZJOI2010]Perm 排列计数_树形DP+组合数学
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
随机推荐
- 几分钟打造超级好看又好用的zsh command line环境
source: https://www.pexels.com/photo/office-working-app-computer-97077/ 注:这篇适用于用MAC 开发的developer 身为程 ...
- 任意图像尺寸变成目标尺寸(包含相应的boxes的变换)
def image_preporcess(image, target_size, gt_boxes=None): image = cv2.cvtColor(image, cv2.COLOR_BGR2R ...
- iframe中操作主体页面的元素,方法
在不使用三大框架的情况下,iframe的使用可以做到在页面中直接引入别的页面作为当前页面的一部分,但是在iframe的使用过程中存在一些相互之间的操作 例如在iframe中获取主页面的元素,使用主页面 ...
- rpm安装与yum安装的区别
linux下的安装包多为rpm安装包.通常安装方法为 rpm -ivh 包的路径+包名.rpm 其中参数-i为安装 -v显示信息 -h显示进度条.这三个参数基本捆绑使用rpm的路径不单可以是本地磁 ...
- Docker以http访问Harbor私有仓库(一)
1 说明 前文Centos7搭建Harbor私有仓库(一)我们成功搭建Harbor,本篇我们主要配置Docker以http方式访问私有仓库 2 Docker配置 2.1 Mac系统 2.1.1 配置D ...
- centos 服务器 nginx 负载均衡服务安装
yum -y install gcc gcc-c++ autoconf automake libtool make cmake yum -y install zlib zlib-devel opens ...
- springboot 集成百度的唯一ID生成器
UidGenerator是百度开源的Java语言实现,基于Snowflake算法的唯一ID生成器.而且,它非常适合虚拟环境,比如:Docker.另外,它通过消费未来时间克服了雪花算法的并发限制.Uid ...
- 【解决】Pod 状态一直 Terminating,Need to kill Pod
偶然查看服务时发现有个单副本的 pod 一直处于Terminating状态,已达 8 天之久,且手动删除删除不掉 [appuser@lyj 2019-09-20 14:35:36 ~]$ kubect ...
- SpringCloud2.0 Hystrix Feign 基于Feign实现断路器 基础教程(七)
1.启动[服务中心]集群,工程名:springcloud-eureka-server 参考 SpringCloud2.0 Eureka Server 服务中心 基础教程(二) 2.启动[服务提供者]集 ...
- C#常用的图片处理方法-图片剪切、图片压缩、多图合并代码
/// <summary> /// 图片转成圆角方法二 /// </summary> private Bitmap WayTwo(Bitmap bitmap) { //usin ...