目标检测论文解读4——Faster R-CNN
背景
Fast R-CNN中的region proposal阶段所采用的SS算法成为了检测网络的速度瓶颈,本文是在Fast R-CNN基础上采用RPN(Region Proposal Networks)代替SS。
方法
从图中我们可以看到,RPN的输入为最后一个Conv层输出的feature map,输出为一系列ROI,后面的过程就跟Fast R-CNN一样了。
所以在这里我们只需要了解RPN是如何工作的。
论文里有这样一张图,讲解了RPN的过程(注意后面的k不是千,而是代表每个特征点要预测的anchors个数)。但我觉得可能很多人看到这张图都难以理解,本人也是结合模型的网络结构才理解的,所以我在这里更通俗地解释一下。
论文上的图有点抽象,屏蔽了很多细节部分,初学者看的话可能会似懂非懂,从网络结构上看的话那么RPN的原理就非常清晰了。
假设每个点预测9个Anchor,即k=9
(1)首先,原图片经过一系列卷积,会得到一个feature map,即左下角的256*h*w的FM,作为ROI pooling和RPN的输入;
(2)RPN网络中,256*h*w的FM,先经过256*3*3 Conv+Relu,得到一个新的256*h*w的FM(注意:这里pad=1,所以h和w不变),这个步骤对应论文图中的3*3的sliding window;
(3)新的256*h*w的FM经两个分支,一个是18*1*1 Conv,代表前背景分类分支,输出一个18*h*w的FM,用来预测特征图的每个点所对应的Anchors是为前景还是背景;
(4)另一个是36*1*1 Conv,代表坐标回归分支,输出一个36*h*w的FM,用来预测特征图的每个点所对应的9个Anchors坐标需要调整的大小;
(5)把上面两种预测综合一下,就能得到预测的候选框了,后面的步骤就跟Fast R-CNN一样了。
总结
Faster R-CNN = RPN + Fast R-CNN
目标检测论文解读4——Faster R-CNN的更多相关文章
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- 目标检测论文解读3——Fast R-CNN
背景 deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务.SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段 ...
- 目标检测论文解读5——YOLO v1
背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...
- 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...
- 目标检测论文解读10——DSSD
背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...
- 目标检测论文解读13——FPN
引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...
- 目标检测论文解读12——RetinaNet
引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...
- 目标检测论文解读9——R-FCN
背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...
- 目标检测论文解读6——SSD
背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...
随机推荐
- ACT开发初步(一)
ACT的全称是Application Customization Toolkit,是面向ANSYS系列产品的统一的二次开发平台.利用基于Python的API(Application Programmi ...
- Java 并发系列之三:java 内存模型(JMM)
1. 并发编程的挑战 2. 并发编程需要解决的两大问题 3. 线程通信机制 4. 内存模型 5. volatile 6. synchronized 7. CAS 8. 锁的内存语义 9. DCL 双重 ...
- Java基础之十三 字符串
第十三章 字符串 13.1 不可变String String对象是不可变的.String类中每一个看起来会修改String值得方法,实际上都是创建了一个全新得String对象,以包含修改后得字符串内容 ...
- Azure DevOps Server (TFS) 修改工作项附件大小限制
1. 问题描述 当上传工作项附件时,系统提示"附件大小限制" 2.解决方案 2.1 默认设置 默认情况下,Azure DevOps Service和Team Foundation ...
- PHP正则匹配网址
/** * @param $url 网址 * @return bool */ public static function checkUrl($url){ $pattern="/^(http ...
- BJFU-225-基于链表的两个递增有序序列的合并
#include<stdio.h> #include<stdlib.h> typedef struct Lnode{ int num; struct Lnode * next; ...
- Linux文件目录指令
1.pwd指令 pwd 显示当前所在的目录 2.ls指令 ls [选项] [目录或文件] 查看文件信息 ls -a 查看所有文件和目录,包括隐藏的 ls -l 以列表的方式显示 3.cd指令 cd 路 ...
- 【1】【leetcode-17】电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任何字母. 示例: 输入:"23"输出:[" ...
- OpenGL学习 (一) - 简单窗口绘制
一.OpenGL 简介 OpenGL 本质: OpenGL(Open Graphics Library),通常可以认为是API,其包含了一系列可以操作图形.图像的函数.但深究下来,它是由Khronos ...
- JavaScript由来
在互联网时代,网速还很差劲的时候,表单输入数据的合法性验证需要与服务器交换数据,从而加重了使用者的负担. 网景公司为了解决这种简单问题开发了JavaScript.在1995年2月网景公司在发布自己的浏 ...