1. Segment Tree Beats

2. ZR集训补题(还剩10题)

3. 尽可能将各种数据结构写得熟练。。。(某神仙:要把平衡树写得跟线段树一样熟练)

4. 树相关数据结构和算法(dsu on tree, 长链剖分,点分治,点分树等)

5.【重点】 dp相关算法与计算几何内容。

TODO list(咕咕咕。。。的更多相关文章

  1. (转)S5pv210 HDMI 接口在 Linux 3.0.8 驱动框架解析 (By liukun321 咕唧咕唧)

    作者:liukun321 咕唧咕唧 日期:2014.1.18 转载请标明作者.出处:http://blog.csdn.net/liukun321/article/details/18452663 本文 ...

  2. u-boot for tiny210 ver1.0(by liukun321咕唧咕唧)

     新版本下载: 下面的链接提供了较新版本的源码 ver4.0源码下载:u-boot for tiny210 ver4.0 ver3.1源码下载: u-boot for tiny210 ver3.1 v ...

  3. linux多线程驱动中调用udelay()对整个系统造成的影响(by liukun321咕唧咕唧)

    以前没考虑过这个问题,而且之前可能运气比较好,虽然用了udelay但也没出什么奇怪的问题,今天在 CSDN上看到了一篇关于此问题帖子,觉得很受用,再此做简要的记录和分析: 驱动开的是内核线程 跟普通进 ...

  4. 基于S5pv210流媒体server的实现之网络摄像头(by liukun321 咕唧咕唧)

    这里仅介绍流媒体server端的实现思路.及编码注意问题,不会贴代码的详细实现. 直接入正题先介绍一下系统硬件框架: server端连接PC机用VLC播放例如以下图: server端应用程序能够分为图 ...

  5. FT5X06 如何应用在10寸电容屏(linux-3.5电容屏驱动简析&移植10寸电容屏驱动到Android4.2) (by liukun321咕唧咕唧)

    这是几个月以前的东西了,在彻底遗忘之前拿出来好好写写.做个笔记,也算是造福后来人了.在做这个项目之前,没有做过电容屏的驱动,印象中的电容触摸屏是不需要校正的.IC支持多大的屏就要配多大的屏.但是拿到需 ...

  6. LuoGu P4996 咕咕咕

    题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...

  7. 洛咕3312 [SDOI2014]数表

    洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...

  8. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  9. 洛咕 P2336 [SCOI2012]喵星球上的点名

    洛咕 P2336 [SCOI2012]喵星球上的点名 先求出SA和height,一个点名串对应的就是一段区间,还有很多个点,就转化成了 有很多个区间,很多个点集,对每个区间计算和多少个点集有交,对每个 ...

随机推荐

  1. An Illustrated Proof of the CAP Theorem

    An Illustrated Proof of the CAP Theorem The CAP Theorem is a fundamental theorem in distributed syst ...

  2. .Net MVC生成二维码并前端展示

    简介: 二维码又称二维条码,常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更 ...

  3. C# vb .net实现胶片效果滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的胶片效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步 ...

  4. python 基础(集合)

    #set里的元素是唯一的,即没有重复的,可以用set()函数,去数据的重复冗余 L = [1,1,1,2,4,5,6,7] S = set(L) print(S) #打印结果{1, 2, 4, 5, ...

  5. P1347 排序 (拓扑排序,tarjan)

    题目 P1347 排序 解析 打开一看拓扑排序,要判环. 三种情况 有环(存在矛盾) 没环但在拓扑排序时存在有两个及以上的点入度为0(关系无法确定) 除了上两种情况(关系可确定) 本来懒了一下,直接在 ...

  6. (转载) @ConfigurationProperties 注解使用姿势,这一篇就够了

    SpringBoot中的@ConfigurationProperties 传送门: http://www.hellojava.com/a/82613.html

  7. Android为TV端助力记录EditText.setInputType的坑

    如XML中设置android:inputType=”numberDecimal”在Java代码中仅设置setInputType(EditorInfo.TYPE_NUMBER_FLAG_DECIMAL) ...

  8. 11g包dbms_parallel_execute在海量数据处理过程中的应用

    11g包dbms_parallel_execute在海量数据处理过程中的应用 一.1  BLOG文档结构图 一.2  前言部分 一.2.1  导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...

  9. 数据库与数据仓库的区别实际讲的是OLTP与OLAP的区别

    什么是数据仓库 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH.数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合.它出于分析性报告和决策支持目的而创建. ...

  10. Everything 配置问题导致信息泄露复现

    0x00 简介 Everything是一个私有的免费Windows桌面搜索引擎,可以在NTFS卷上快速地根据名称查找文件和目录. "Everything" 是 Windows 上一 ...