【洛谷P5050】 【模板】多项式多点求值
code:
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define setIO(s) freopen(s".in","r",stdin) // , freopen(s".out","w",stdout)
using namespace std;
char buf[100000],*p1,*p2;
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd()
{
int x=0; char s=nc();
while(s<'0') s=nc();
while(s>='0') x=(((x<<2)+x)<<1)+s-'0',s=nc();
return x;
}
void print(int x) {if(x>=10) print(x/10);putchar(x%10+'0');}
const int G=3;
const int N=2000005;
const int mod=998244353;
int A[N],B[N],w[2][N],mem[N*100],*ptr=mem;
inline int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) tmp=(ll)tmp*x%mod;
return tmp;
}
inline int INV(int a) { return qpow(a,mod-2); }
inline void ntt_init(int len)
{
int i,j,k,mid,x,y;
w[1][0]=w[0][0]=1,x=qpow(3,(mod-1)/len),y=qpow(x,mod-2);
for (i=1;i<len;++i) w[0][i]=(ll)w[0][i-1]*x%mod,w[1][i]=(ll)w[1][i-1]*y%mod;
}
void NTT(int *a,int len,int flag)
{
int i,j,k,mid,x,y;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
for(i=0;i<len;i+=mid<<1)
for(j=0;j<mid;++j)
{
x=a[i+j], y=(ll)w[flag==-1][len/(mid<<1)*j]*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
if(flag==-1)
{
int rev=INV(len);
for(i=0;i<len;++i) a[i]=(ll)a[i]*rev%mod;
}
}
inline void getinv(int *a,int *b,int len,int la)
{
if(len==1) { b[0]=INV(a[0]); return; }
getinv(a,b,len>>1,la);
int l=len<<1,i;
memset(A,0,l*sizeof(A[0]));
memset(B,0,l*sizeof(A[0]));
memcpy(A,a,min(la,len)*sizeof(a[0]));
memcpy(B,b,len*sizeof(b[0]));
ntt_init(l);
NTT(A,l,1),NTT(B,l,1);
for(i=0;i<l;++i) A[i]=((ll)2-(ll)A[i]*B[i]%mod+mod)*B[i]%mod;
NTT(A,l,-1);
memcpy(b,A,len<<2);
}
struct poly
{
int len,*a;
poly(){}
poly(int l) {len=l,a=ptr,ptr+=l; }
inline void rev() { reverse(a,a+len); }
inline void fix(int l) {len=l,a=ptr,ptr+=l;}
inline void get_mod(int l) { for(int i=l;i<len;++i) a[i]=0; len=l; }
inline poly dao()
{
poly re(len-1);
for(int i=1;i<len;++i) re.a[i-1]=(ll)i*a[i]%mod;
return re;
}
inline poly Inv(int l)
{
poly b(l);
getinv(a,b.a,l,len);
return b;
}
inline poly operator * (const poly &b) const
{
poly c(len+b.len-1);
if(c.len<=500)
{
for(int i=0;i<len;++i)
if(a[i]) for(int j=0;j<b.len;++j) c.a[i+j]=(c.a[i+j]+(ll)(a[i])*b.a[j])%mod;
return c;
}
int n=1;
while(n<(len+b.len)) n<<=1;
memset(A,0,n<<2);
memset(B,0,n<<2);
memcpy(A,a,len<<2);
memcpy(B,b.a,b.len<<2);
ntt_init(n);
NTT(A,n,1), NTT(B,n,1);
for(int i=0;i<n;++i) A[i]=(ll)A[i]*B[i]%mod;
NTT(A,n,-1);
memcpy(c.a,A,c.len<<2);
return c;
}
poly operator + (const poly &b) const
{
poly c(max(len,b.len));
for(int i=0;i<c.len;++i) c.a[i]=((i<len?a[i]:0)+(i<b.len?b.a[i]:0))%mod;
return c;
}
poly operator - (const poly &b) const
{
poly c(len);
for(int i=0;i<len;++i)
{
if(i>=b.len) c.a[i]=a[i];
else c.a[i]=(a[i]-b.a[i]+mod)%mod;
}
return c;
}
poly operator / (poly u)
{
int n=len,m=u.len,l=1;
while(l<(n-m+1)) l<<=1;
rev(),u.rev();
poly v=u.Inv(l);
v.get_mod(n-m+1);
poly re=(*this)*v;
rev(),u.rev();
re.get_mod(n-m+1);
re.rev();
return re;
}
poly operator % (poly u)
{
poly re=(*this)-u*(*this/u);
re.get_mod(u.len-1);
return re;
}
}p[N<<2],pr;
int xx[N],yy[N];
#define lson now<<1
#define rson now<<1|1
inline void pushup(int l,int r,int now)
{
int mid=(l+r)>>1;
if(r>mid) p[now]=p[lson]*p[rson];
else p[now]=p[lson];
}
void build(int l,int r,int now,int *pp)
{
if(l==r)
{
p[now].fix(2);
p[now].a[0]=mod-pp[l];
p[now].a[1]=1;
return;
}
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson,pp);
if(r>mid) build(mid+1,r,rson,pp);
p[now]=p[lson]*p[rson];
}
void get_val(int l,int r,int now,poly b,int *pp,int *t)
{
if(b.len<=500)
{
for(int i=l;i<=r;++i)
{
ull s=0;
for(int j=b.len-1;j>=0;--j)
{
s=((ull)s*pp[i]+b.a[j])%mod;
if(!(j&7)) s%=mod;
}
t[i]=s%mod;
}
return;
}
int mid=(l+r)>>1;
if(l<=mid) get_val(l,mid,lson,b%p[lson],pp,t);
if(r>mid) get_val(mid+1,r,rson,b%p[rson],pp,t);
}
poly solve_polate(int l,int r,int now,int *t)
{
if(l==r)
{
poly re(1);
re.a[0]=t[l];
return re;
}
int mid=(l+r)>>1;
poly L,R;
L=solve_polate(l,mid,lson,t);
R=solve_polate(mid+1,r,rson,t);
return L*p[rson]+R*p[lson];
}
int main()
{
int i,j,n,m,l;
n=rd(),m=rd();
pr.fix(n+1);
static int pp[N];
for(i=0;i<=n;++i) pr.a[i]=rd();
for(i=1;i<=m;++i) pp[i]=rd();
build(1,m,1,pp);
get_val(1,m,1,pr,pp,pp);
for(i=1;i<=m;++i) printf("%d\n",pp[i]);
return 0;
}
【洛谷P5050】 【模板】多项式多点求值的更多相关文章
- 洛谷P5282 【模板】快速阶乘算法(多项式多点求值+MTT)
题面 传送门 前置芝士 \(MTT\),多项式多点求值 题解 这题法老当初好像讲过--而且他还说这种题目如果模数已经给定可以直接分段打表艹过去 以下是题解 我们设 \[F(x)=\prod_{i=0} ...
- luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT
LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P5050 【模板】多项式多点求值
传送门 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时-- 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 题解 首先我们要知道一个结论\[f(x_0)\equiv ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
随机推荐
- Python之路【第二十篇】:python项目之旧版抽屉新热榜
旧版抽屉新热榜 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...
- go switch 和java C#有不同
1 switch 后的语句可以有简单的赋值语句 2 case :后的语句结束后不需要break;默认自动结束 除非以 fallthrough 语句结束,否则分支会自动终止 没有条件的 switch 有 ...
- 解决html 图片缓存问题
<!--问题:上传一张图片,通过js更新src属性刷新图片使其即时显示时, 当img的src当前的url与上次地址无变化时(只更改图片,名称不变,不同图片名称相同)图片不变化(仍显示原来的图片) ...
- 为 WPF 程序添加 Windows 跳转列表的支持
原文:为 WPF 程序添加 Windows 跳转列表的支持 Windows 跳转列表是自 Windows 7 时代就带来的功能,这一功能是跟随 Windows 7 的任务栏而发布的.当时应用程序要想用 ...
- 运行一个docker镜像并开机启动
记录,我用的liunx机是centos7.x 安装 安装Docker包$ sudo yum install docker-engine 启动Docker守护进程$ sudo service docke ...
- springcolud 的学习(四)服务治理. Eureka
什么是服务治理在传统rpc远程调用中,服务与服务依赖关系,管理比较复杂,所以需要使用服务治理,管理服务与服务之间依赖关系,可以实现服务调用.负载均衡.容错等,实现服务发现与注册.服务注册与发现 在服务 ...
- The underlying connection was closed: An unexpected error occurred on a rece
服务器问题,在后台访问外网了,特别是https的网站,容易出这个问题. 修改服务器配置,或修改代码解决.
- 自学Python编程的第十天(希望有IT大牛看见的指点小弟我,万分感谢)---------来自苦逼的转行人
2019-09-20-23:24:15 今天逛论坛.逛知识星球时.逛b站up主时,都说到低学历,非科班的人最好不要去自学Python 他们都说:如果我们学python是为了找工作,最好不要把pytho ...
- copy file
import io,,,,,,, from https://pub.dev/packages/large_file_copy Directory directory = await getApplic ...
- Matlab原型模式
原型(Prototype)模式的定义如下:用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型相同或相似的新对象.Matlab面向对象编程有两种类,一种是Value Class,一种是Ha ...