code:

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define setIO(s) freopen(s".in","r",stdin) // , freopen(s".out","w",stdout)
using namespace std;
char buf[100000],*p1,*p2;
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd()
{
int x=0; char s=nc();
while(s<'0') s=nc();
while(s>='0') x=(((x<<2)+x)<<1)+s-'0',s=nc();
return x;
}
void print(int x) {if(x>=10) print(x/10);putchar(x%10+'0');}
const int G=3;
const int N=2000005;
const int mod=998244353;
int A[N],B[N],w[2][N],mem[N*100],*ptr=mem;
inline int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) tmp=(ll)tmp*x%mod;
return tmp;
}
inline int INV(int a) { return qpow(a,mod-2); }
inline void ntt_init(int len)
{
int i,j,k,mid,x,y;
w[1][0]=w[0][0]=1,x=qpow(3,(mod-1)/len),y=qpow(x,mod-2);
for (i=1;i<len;++i) w[0][i]=(ll)w[0][i-1]*x%mod,w[1][i]=(ll)w[1][i-1]*y%mod;
}
void NTT(int *a,int len,int flag)
{
int i,j,k,mid,x,y;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
for(i=0;i<len;i+=mid<<1)
for(j=0;j<mid;++j)
{
x=a[i+j], y=(ll)w[flag==-1][len/(mid<<1)*j]*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
if(flag==-1)
{
int rev=INV(len);
for(i=0;i<len;++i) a[i]=(ll)a[i]*rev%mod;
}
}
inline void getinv(int *a,int *b,int len,int la)
{
if(len==1) { b[0]=INV(a[0]); return; }
getinv(a,b,len>>1,la);
int l=len<<1,i;
memset(A,0,l*sizeof(A[0]));
memset(B,0,l*sizeof(A[0]));
memcpy(A,a,min(la,len)*sizeof(a[0]));
memcpy(B,b,len*sizeof(b[0]));
ntt_init(l);
NTT(A,l,1),NTT(B,l,1);
for(i=0;i<l;++i) A[i]=((ll)2-(ll)A[i]*B[i]%mod+mod)*B[i]%mod;
NTT(A,l,-1);
memcpy(b,A,len<<2);
}
struct poly
{
int len,*a;
poly(){}
poly(int l) {len=l,a=ptr,ptr+=l; }
inline void rev() { reverse(a,a+len); }
inline void fix(int l) {len=l,a=ptr,ptr+=l;}
inline void get_mod(int l) { for(int i=l;i<len;++i) a[i]=0; len=l; }
inline poly dao()
{
poly re(len-1);
for(int i=1;i<len;++i) re.a[i-1]=(ll)i*a[i]%mod;
return re;
}
inline poly Inv(int l)
{
poly b(l);
getinv(a,b.a,l,len);
return b;
}
inline poly operator * (const poly &b) const
{
poly c(len+b.len-1);
if(c.len<=500)
{
for(int i=0;i<len;++i)
if(a[i]) for(int j=0;j<b.len;++j) c.a[i+j]=(c.a[i+j]+(ll)(a[i])*b.a[j])%mod;
return c;
}
int n=1;
while(n<(len+b.len)) n<<=1;
memset(A,0,n<<2);
memset(B,0,n<<2);
memcpy(A,a,len<<2);
memcpy(B,b.a,b.len<<2);
ntt_init(n);
NTT(A,n,1), NTT(B,n,1);
for(int i=0;i<n;++i) A[i]=(ll)A[i]*B[i]%mod;
NTT(A,n,-1);
memcpy(c.a,A,c.len<<2);
return c;
}
poly operator + (const poly &b) const
{
poly c(max(len,b.len));
for(int i=0;i<c.len;++i) c.a[i]=((i<len?a[i]:0)+(i<b.len?b.a[i]:0))%mod;
return c;
}
poly operator - (const poly &b) const
{
poly c(len);
for(int i=0;i<len;++i)
{
if(i>=b.len) c.a[i]=a[i];
else c.a[i]=(a[i]-b.a[i]+mod)%mod;
}
return c;
}
poly operator / (poly u)
{
int n=len,m=u.len,l=1;
while(l<(n-m+1)) l<<=1;
rev(),u.rev();
poly v=u.Inv(l);
v.get_mod(n-m+1);
poly re=(*this)*v;
rev(),u.rev();
re.get_mod(n-m+1);
re.rev();
return re;
}
poly operator % (poly u)
{
poly re=(*this)-u*(*this/u);
re.get_mod(u.len-1);
return re;
}
}p[N<<2],pr;
int xx[N],yy[N];
#define lson now<<1
#define rson now<<1|1
inline void pushup(int l,int r,int now)
{
int mid=(l+r)>>1;
if(r>mid) p[now]=p[lson]*p[rson];
else p[now]=p[lson];
}
void build(int l,int r,int now,int *pp)
{
if(l==r)
{
p[now].fix(2);
p[now].a[0]=mod-pp[l];
p[now].a[1]=1;
return;
}
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson,pp);
if(r>mid) build(mid+1,r,rson,pp);
p[now]=p[lson]*p[rson];
}
void get_val(int l,int r,int now,poly b,int *pp,int *t)
{
if(b.len<=500)
{
for(int i=l;i<=r;++i)
{
ull s=0;
for(int j=b.len-1;j>=0;--j)
{
s=((ull)s*pp[i]+b.a[j])%mod;
if(!(j&7)) s%=mod;
}
t[i]=s%mod;
}
return;
}
int mid=(l+r)>>1;
if(l<=mid) get_val(l,mid,lson,b%p[lson],pp,t);
if(r>mid) get_val(mid+1,r,rson,b%p[rson],pp,t);
}
poly solve_polate(int l,int r,int now,int *t)
{
if(l==r)
{
poly re(1);
re.a[0]=t[l];
return re;
}
int mid=(l+r)>>1;
poly L,R;
L=solve_polate(l,mid,lson,t);
R=solve_polate(mid+1,r,rson,t);
return L*p[rson]+R*p[lson];
}
int main()
{
int i,j,n,m,l;
n=rd(),m=rd();
pr.fix(n+1);
static int pp[N];
for(i=0;i<=n;++i) pr.a[i]=rd();
for(i=1;i<=m;++i) pp[i]=rd();
build(1,m,1,pp);
get_val(1,m,1,pr,pp,pp);
for(i=1;i<=m;++i) printf("%d\n",pp[i]);
return 0;
}

  

【洛谷P5050】 【模板】多项式多点求值的更多相关文章

  1. 洛谷P5282 【模板】快速阶乘算法(多项式多点求值+MTT)

    题面 传送门 前置芝士 \(MTT\),多项式多点求值 题解 这题法老当初好像讲过--而且他还说这种题目如果模数已经给定可以直接分段打表艹过去 以下是题解 我们设 \[F(x)=\prod_{i=0} ...

  2. luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT

    LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像 ...

  3. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. 洛谷P5050 【模板】多项式多点求值

    传送门 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时-- 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 题解 首先我们要知道一个结论\[f(x_0)\equiv ...

  6. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  7. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  8. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  9. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

随机推荐

  1. 不会前后端,用vps搭建个人博客(一)

    一.vps供应商选择 常见的国内有腾讯云(良心云).阿里云(套路云)等,国外有bandwagon和vultr,本人选的vultr山姆叔叔东部便宜小鸡.目前vlutr还有新用户注册后充值10刀送50刀的 ...

  2. vscode 前端常用插件推荐

    1.  vscode 简介vscode是微软开发的的一款代码编辑器,就如官网上说的一样,vscode重新定义(redefined)了代码编辑器.当前市面上常用的轻型代码编辑器主要是:sublime,n ...

  3. centos 安装htop

    1.首先启用 EPEL Repository yum -y install epel-release 2.可以用 yum 直接安裝 Htop: yum -y install htop

  4. angular复习笔记3-组件

    组件Component 组件是构成angular应用的核心,angular的有序运行依赖于组件的协同工作,组件之于angular应用就像是汽车和汽车零部件的意思. 概述 近几年的前端发展迅速,各种工程 ...

  5. Nginx fastcgi_cache权威指南

    一.简介 Nginx版本从0.7.48开始,支持了类似Squid的缓存功能.这个缓存是把URL及相关组合当做Key,用Md5算法对Key进行哈希,得到硬盘上对应的哈希目录路径,从而将缓存内容保存在该目 ...

  6. mysql-配置与使用(跳过原始密码登陆)

    目录 简单的使用步骤 环境变量的操作 配置文件的使用 查找进程 mysql 5.6 管理员密码的设置 简单的使用步骤 bin 下面有mysqld.exe 是服务端程序, mysql.exe 是客户端程 ...

  7. PHP 接口输出 图片

    html: <img src="{eq name='v.miniqrcode' value=""}{:url('makeMiniQrcode_do')}?id={$ ...

  8. angularcli 第五篇(输入框、表单处理)

    本文参考:Angular4 表单快速入门 注:涉及input表单时要在AppComponent中引入 FormsModule模块:     import{ FormsModule } from '@a ...

  9. MySQL/MariaDB数据库的复制加密

      MySQL/MariaDB数据库的复制加密 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MySQL的安全问题 1>.基于SSL复制 在默认的主从复制过程或远程连接 ...

  10. MongoDB 分片问题汇总

    分片是MongoDB的扩展方式,通过分片能够增加更多的机器来用对不断增加的负载和数据,还不影响应用. 1.分片简介 分片是指将数据拆分,将其分散存在不同机器上的过程.有时也叫分区.将数据分散在不同的机 ...