P1436 棋盘分割[dp]
题目描述
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的平方和最小。
请编程对给出的棋盘及n,求出平方和的最小值。
解析
\(dp[k][i][j][x][y]\)表示当前在切第k刀,当前切\((i,j)\)为左上角,\((x,y)\)为右下角的矩形的最小平方和。
考虑状态转移,一个状态转移到下一个时,它可以继续往两个部分切下去,也就是往两个方向转移。
采用前缀和优化,其中\(calc(i,j,x,y)\)表示以\((i,j)\)为左上角,\((x,y)\)为右下角的矩形的和的平方。
\\dp[k-1][i][j][x'][y]+calc(x'+1,j,x,y))
\]
\\dp[k-1][i][j][x][y']+calc(i,y',x,y))
\]
初始化显然是切第0刀时,切任意矩形的最小平方和就是不切,就是该矩形的和的平方。
之前的思路和这个稍稍有些不同,我定义dp数组为当前切剩下以\((i,j)\)为左上角,\((x,y)\)为右下角的矩形的最小平方和,那么就需要四个转移,但是我转移写炸了(摊。
参考代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 11
#define MOD 2520
#define E 1e-12
using namespace std;
int dp[16][N][N][N][N],mp[N][N],n;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
inline int calc(int x1,int y1,int x2,int y2)
{
if(x1>x2) swap(x1,x2);
if(y1>y2) swap(y1,y2);
return (mp[x2][y2]-mp[x1-1][y2]-mp[x2][y1-1]+mp[x1-1][y1-1])*(mp[x2][y2]-mp[x1-1][y2]-mp[x2][y1-1]+mp[x1-1][y1-1]);
}
int main()
{
n=read();
memset(dp,0x3f,sizeof(dp));
memset(dp[0],0,sizeof(dp[0]));
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j){
dp[0][i][j][i][j]=mp[i][j]=read();
mp[i][j]+=mp[i-1][j]+mp[i][j-1]-mp[i-1][j-1];
}
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j)
for(int x=i;x<=8;++x)
for(int y=j;y<=8;++y)
dp[0][i][j][x][y]=calc(i,j,x,y);
for(int k=1;k<n;++k){
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j)
for(int x=i;x<=8;++x)
for(int y=j;y<=8;++y){
for(int dx=i;dx<=x;++dx)
dp[k][i][j][x][y]=min(dp[k][i][j][x][y],min(dp[k-1][i][j][dx][y]+calc(dx+1,j,x,y),dp[k-1][dx+1][j][x][y]+calc(i,j,dx,y)));
for(int dy=j;dy<=y;++dy)
dp[k][i][j][x][y]=min(dp[k][i][j][x][y],min(dp[k-1][i][j][x][dy]+calc(i,dy+1,x,y),dp[k-1][i][dy+1][x][y]+calc(i,j,x,dy)));
}
}
cout<<dp[n-1][1][1][8][8]<<endl;
return 0;
}
P1436 棋盘分割[dp]的更多相关文章
- 洛谷 P1436 棋盘分割 解题报告
P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...
- Luogu P1436 棋盘分割 暴力DP
我的天,,,,,n=8,k<=15,,,这怕不是暴力DP+高维数组.... 开一个五维数组f[k][i][j][p][q]表示从(i,j)到(p,q)中分成k个矩形最小的平方和. 然后初始化时用 ...
- 【Luogu】P1436 棋盘分割 题解
嗯,点开题目,哇!是一道闪亮亮的蓝题! 不要被吓到了,其实,这道题就是一个简单的DP啦! 我们设 \(f[x1][y1][x2][y2][c]\) 为以 \((x1,y1)\) 为左上角,以 \((x ...
- POJ 1191 棋盘分割(DP)
题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...
- NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论
http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...
- 洛谷P1436 棋盘分割
洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...
- poj 1191 棋盘分割(dp + 记忆化搜索)
题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...
- [POJ] 1191 [LUOGU] P1436 棋盘分割
那个均方差,可以通过展开.合并Σ,发现最终只有Xi^2会对答案造成影响,其他都是定值,所以求出最小的和的平方就行. 其实这才是这题最难的部分,以下都是码农部分. f[x1][y1][x2][y2][k ...
- HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析: 枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...
随机推荐
- Java Servlet:服务器小程序
servlet:服务器小程序 servlet是一个接口,接口是一种规范,因此servlet是一种规范 一个类声明为抽象类的原因: 不包含抽象方法,不想被实例化 包含抽象方法,子类有对抽象方法的不同实现 ...
- Python界面常用GUI包
作为Pyhon开发者,你迟早都会碰到图形用户界面(GUI)应用开发任务,这时候我们就需要一些界面库来帮助我们快速搭建界面,python的界面库很多,我认识的并不多,这里只列出几种我认识的 1.tkin ...
- docker容器中用户自定bridge网络与默认bridge网络之间的区别
转载 https://blog.csdn.net/dkfajsldfsdfsd/article/details/79959534
- !与&&优先级的问题
逻辑否(!)是一元操作符,逻辑与(&&)是二元操作符,一元操作符的优先级高于任何二元操作符. 例如: bool flag:int t: if(!flag && t &g ...
- 目标检测算法Faster R-CNN
一:Faster-R-CNN算法组成: 1.PRN候选框提取模块: 2.Fast R-CNN检测模块. 二:Faster-R-CNN框架介绍 三:RPN介绍 3.1训练步骤:1.将图片输入到VGG或Z ...
- Python属性的查找顺序
属性查找顺序 关于属性描述符请看上文>属性描述符 在梳理属性查找相关知识时,查看了很多的书籍和他人的博客,发现很多讲的过于抽象,并没有一个清晰的流程呈现.特此写下我对于此方面的理解和总结. ...
- 网络 TCP三次握手,四次挥手详解
三次握手,四次挥手可以说是炙手可热的面试题了,来看看它究竟长什么样子吧! 我们先把流程图贴上来 : 为什么这么复杂? 因为TCP是可靠性传输. 确认可靠传输的前提: TCP连接管理机制 用TCP首部 ...
- Linux组管理、用户管理、查看用户信息、usermod、which、切换用户、修改文件具体权限
组管理 提示:创建组/删除组的终端命令都需要通过sudo执行 序号 命令 作用 01 groupadd组名 添加组 02 groupdel组名 删除组 03 cat/etc/group 确认组信息 0 ...
- Linux jdk8 安装
wegt 命令安装 wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http%3A%2F%2Fwww.o ...
- SpringCloud入门使用
目的: 1.springcloud简介 入门案例 2.注册中心eureka springcloud简介 推荐一个springcloud讲解详细的博客:https://blog.csdn.net/qq3 ...