Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:

  1. Row R and column C both contain exactly N black pixels.
  2. For all rows that have a black pixel at column C, they should be exactly the same as row R

The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.

Example:

Input:
[['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'W', 'B', 'W', 'B', 'W']] N = 3
Output: 6
Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
0 1 2 3 4 5 column index
0 [['W', 'B', 'W', 'B', 'B', 'W'],
1 ['W', 'B', 'W', 'B', 'B', 'W'],
2 ['W', 'B', 'W', 'B', 'B', 'W'],
3 ['W', 'W', 'B', 'W', 'B', 'W']]
row index Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels.
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.

Note:

    1. The range of width and height of the input 2D array is [1,200].

531. Lonely Pixel I 的拓展,这题多了一个整数N,行和列可以最多含有N个黑元素。

解法:思路和531题一样,还是用一个行和一个列先统计黑元素的个数,然后在遍历一遍图,是黑元素并且行和列都等于N的就加到结果,最后返回结果。这题又多出一个条件2:要保证这N行的黑元素的位置要完全一样,可以一个一个的来比较。好的做法是把行元素转换成字符串或tuple,用一个哈希表记录行元素,然后直接比较行。

0[['W', 'B', 'W', 'B', 'B', 'W'],
1 ['W', 'W', 'B', 'B', 'B', 'W'],
2 ['W', 'B', 'W', 'B', 'B', 'W'],
3 ['W', 'B', 'W', 'W', 'B', 'W']]

Java:

public int findBlackPixel(char[][] picture, int N) {
int m = picture.length;
if (m == 0) return 0;
int n = picture[0].length;
if (n == 0) return 0; Map<String, Integer> map = new HashMap<>();
int[] colCount = new int[n]; for (int i = 0; i < m; i++) {
String key = scanRow(picture, i, N, colCount);
if (key.length() != 0) {
map.put(key, map.getOrDefault(key, 0) + 1);
}
} int result = 0;
for (String key : map.keySet()) {
if (map.get(key) == N) {
for (int j = 0; j < n; j++) {
if (key.charAt(j) == 'B' && colCount[j] == N) {
result += N;
}
}
}
} return result;
} private String scanRow(char[][] picture, int row, int target, int[] colCount) {
int n = picture[0].length;
int rowCount = 0;
StringBuilder sb = new StringBuilder(); for (int j = 0; j < n; j++) {
if (picture[row][j] == 'B') {
rowCount++;
colCount[j]++;
}
sb.append(picture[row][j]);
} if (rowCount == target) return sb.toString();
return "";
}  

Java: using hashmap to store the string of rows. So that we don't need to check rule 2

public int findBlackPixel(char[][] picture, int N) {
if (picture == null || picture.length == 0 || picture[0].length == 0) return 0;
int m = picture.length, n = picture[0].length;
int[] cols = new int[n];
Map<String, Integer> map = new HashMap<>(); for (int i = 0; i < m; i++) {
int count = 0;
StringBuilder sb = new StringBuilder();
for (int j = 0; j < n; j++) {
if (picture[i][j] == 'B') {
cols[j]++;
count++;
}
sb.append(picture[i][j]);
}
if (count == N) {
String curRow = sb.toString();
map.put(curRow, map.getOrDefault(curRow, 0) + 1);
}
} int res = 0;
for (String row : map.keySet()) {
if (map.get(row) != N) continue;
for (int i = 0; i < n; i++) {
if (row.charAt(i) == 'B' && cols[i] == N) {
res += N;
}
}
}
return res;
} 

Python:

class Solution(object):
def findBlackPixel(self, picture, N):
"""
:type picture: List[List[str]]
:type N: int
:rtype: int
"""
rows, cols = [0] * len(picture), [0] * len(picture[0])
lookup = collections.defaultdict(int)
for i in xrange(len(picture)):
for j in xrange(len(picture[0])):
if picture[i][j] == 'B':
rows[i] += 1
cols[j] += 1
lookup[tuple(picture[i])] += 1 result = 0
for i in xrange(len(picture)):
if rows[i] == N and lookup[tuple(picture[i])] == N:
for j in xrange(len(picture[0])):
result += picture[i][j] == 'B' and cols[j] == N
return result

Python:  

class Solution(object):
def findBlackPixel(self, picture, N):
"""
:type picture: List[List[str]]
:type N: int
:rtype: int
"""
lookup = collections.Counter(map(tuple, picture))
cols = [col.count('B') for col in zip(*picture)]
return sum(N * zip(row, cols).count(('B', N)) \
for row, cnt in lookup.iteritems() \
if cnt == N == row.count('B'))

Python:

class Solution(object):
def findBlackPixel(self, picture, N):
"""
:type picture: List[List[str]]
:type N: int
:rtype: int
"""
w, h = len(picture), len(picture[0])
rows, cols = [0] * w, [0] * h
for x in range(w):
for y in range(h):
if picture[x][y] == 'B':
rows[x] += 1
cols[y] += 1 sdict = collections.defaultdict(int)
for idx, row in enumerate(picture):
sdict[''.join(row)] += 1 ans = 0
for x in range(w):
row = ''.join(picture[x])
if sdict[row] != N:
continue
for y in range(h):
if picture[x][y] == 'B':
if rows[x] == N:
if cols[y] == N:
ans += 1
return ans  

C++:

class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int N) {
vector<int> rows = vector<int>(picture.size());
vector<int> cols = vector<int>(picture[0].size()); unordered_map<string, int> lookup;
vector<string> srows;
for (int i = 0; i < picture.size(); ++i) {
string s;
for (int j = 0; j < picture[0].size(); ++j) {
if (picture[i][j] == 'B') {
++rows[i];
++cols[j];
}
s.push_back(picture[i][j]);
}
++lookup[s];
srows.emplace_back(move(s));
} int result = 0;
for (int i = 0; i < picture.size(); ++i) {
if (rows[i] == N && lookup[srows[i]] == N) {
for (int j = 0; j < picture[0].size(); ++j) {
result += picture[i][j] == 'B' && cols[j] == N;
}
}
}
return result;
}
};

  

类似题目:

[LeetCode] 531. Lonely Pixel I 孤独的像素 I

All LeetCode Questions List 题目汇总

[LeetCode] 533. Lonely Pixel II 孤独的像素 II的更多相关文章

  1. [LeetCode] 531. Lonely Pixel I 孤独的像素 I

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  2. [LeetCode] Lonely Pixel I 孤独的像素之一

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  3. LeetCode 533. Lonely Pixel II (孤独的像素之二) $

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  4. [LeetCode] Lonely Pixel II 孤独的像素之二

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  5. LeetCode 531. Lonely Pixel I

    原题链接在这里:https://leetcode.com/problems/lonely-pixel-i/ 题目: Given a picture consisting of black and wh ...

  6. 533. Lonely Pixel II

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  7. LeetCode 531. Longly Pixel I (孤独的像素之一) $

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  8. Leetcode 137. 只出现一次的数字 II - 题解

    Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...

  9. [Leetcode 90]求含有重复数的子集 Subset II

    [题目] Given a collection of integers that might contain duplicates, nums, return all possible subsets ...

随机推荐

  1. app开发-1

    一.了解HBuilder HBuilder内封装了大量的书籍,极大方便了使用 官方文档: http://dev.dcloud.net.cn/mui/ui/ 关于布局: mhead  表头.mbody ...

  2. include指令 include动作

  3. 01背包问题(dfs+剪枝)

    01背包问题 dfs解法 #include <iostream> #include <cstring> #include <algorithm> #include ...

  4. 19-ESP8266 SDK开发基础入门篇--C# TCP客户端编写 , 连接和断开

    https://www.cnblogs.com/yangfengwu/p/11130428.html 渐渐的看过去,,,好多节了... 这节做一个C# TCP客户端 新建项目啥子的就不详细截图写了,自 ...

  5. vue Uncaught SyntaxError: Unexpected token < 报错

    这个问题是因为项目中出现没有闭合的标签,如<img src="">  需改成<img src="xxx.png"/>

  6. mysql distinct()函数 去重

    mysql> select * from table1; +----------+------------+-----+---------------------+ | name_new | t ...

  7. vCenter线上操作磁盘扩容

    以下截图是生产机器,目前是有一块盘,且根分区是/dev/sda3,因为磁盘不足,需要备份的数据要远远超过此时的空间大小:正常情况下,是可以新增硬盘硬盘作为备份 但是作为宿主机下的虚机,因为一些不规范的 ...

  8. 【算法编程 C++ Python】字符串替换

    题目描述 请实现一个函数,将一个字符串中的空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy.   C++使用string,pyt ...

  9. 《JAVA程序设计》_第十周学习总结

    一.学习内容 12.1进程与进程 程序是一段静态的代码,进程是程序的一次动态执行过程,这个过程也是进程本身从产生.发展至消亡的过程. 线程不是进程,是比进程更小的执行单位.但与进程不同的是,线程的中断 ...

  10. SQL学习回顾

    --本文源自<黑马程序员>