​大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]

1. 引言

数据分析中聚类算法的作用

在数据分析中,聚类算法用于发现数据集中的固有分组,通过将相似对象聚集在一起来揭示数据的结构和模式。这种方法常用于市场细分、社交网络分析、组织复杂数据集等领域。

选择K-Means聚类算法的动机

K-Means 是一种广泛使用的聚类算法,主要因其简单、高效,适用于大规模数据处理。它通过优化簇内距离来形成相对均匀的簇,适合于许多实际应用中的基本聚类需求。

K-Means聚类算法的简述

K-Means 是一个无监督学习算法,它的目标是将 n 个观测值划分到 k 个簇中,使得每个观测值属于离它最近的簇中心(质心),从而使簇内的方差最小。

2. K-Means聚类算法概述

2.1 监督学习与无监督学习的对比

监督学习需要预先标记的输出结果来训练模型,常用于分类和回归任务。无监督学习不依赖于标注输出,而是通过分析数据的内在结构和关系来学习数据的分布或模式,聚类是无监督学习中的典型例子。

2.2 K-Means算法简介

K-Means算法通过迭代过程选择簇中心和划分簇来优化簇内距离,直到达到最优或满足停止条件。该算法只需要指定簇的数量 k,并对初始簇中心的选择敏感。

2.3 K-Means的应用实例

K-Means广泛应用于客户细分、图像分割、文档聚类等多个领域,通过识别相似特征的聚集,帮助企业或研究者洞察数据特征和群体行为。

3. K-Means算法的工作原理

3.1 簇与质心的定义

在 K-Means 算法中,"簇"是数据点的集合,这些数据点彼此之间比与其他簇的数据点更相似。"质心"是簇内所有点的平均位置,代表了簇的中心。

3.2 算法步骤详解

K-Means算法的基本步骤包括随机初始化质心,计算每个数据点到每个质心的距离,根据最近质心重新分配数据点到簇,重新计算簇的质心,重复这一过程直到质心不再变化或达到预定的迭代次数。

3.3 初始质心选择的重要性及其影响

初始质心的选择可能会极大影响算法的收敛速度和最终聚类的质量。不恰当的初始质心可能导致簇结果不稳定或收敛到局部最优。

4. K-Means算法的数学基础

4.1 簇内误差平方和的计算及其评估作用

簇内误差平方和(SSE)是衡量聚类效果的一个重要指标,计算方法是将簇内每个点到其质心的距离平方求和。优化目标是最小化 SSE,从而提高簇的紧密性。

4.2 不同距离度量方法的比较

K-Means常用欧氏距离作为距离度量,但在不同的应用场景中,可以考虑曼哈顿距离、余弦相似度等其他度量方法,以更好地适应数据特性。

5. K-Means算法的实现

5.1 使用Python及scikit-learn实现K-Means

Python 的 scikit-learn 库提供了 K-Means 算法的高效实现。以下是使用 scikit-learn 实现 K-Means 的基本代码示例:

from sklearn.cluster import KMeans
import numpy as np
# 生成模拟数据
X = np.random.rand(100, 2)
# 初始化 KMeans
kmeans = KMeans(n_clusters=3)
# 拟合模型
kmeans.fit(X)
# 获取簇标签
labels = kmeans.labels_

5.2 算法的初始化策略

scikit-learn 中的 K-Means 实现支持多种初始化策略,如随机初始化和 K-Means++ 初始化,后者可以优化初始质心的选择,提高算法的稳定性和效率。

5.3 迭代过程与收敛条件

K-Means 算法的迭代继续进行,直到质心的更新非常小(在设定的阈值之下)或达到预设的迭代次数。这确保了算法能够在合理的时间内收敛到一个稳定的簇划分。

6. 模型评估与选择K值

6.1 手肘法的原理与应用

手肘法是一种用来选择 K 值的技术,它通过绘制不同 K 值的 SSE 曲线,寻找曲线的“手肘”点,即 SSE 下降速度显著变缓的点,通常认为这一点是最佳的簇数量。

6.2 轮廓系数的计算与意义

轮廓系数衡量了簇内的紧密性和簇间的分离度,值范围从 -1 到 1。较高的轮廓系数表明簇内部的点相互更接近,而与其他簇的点较远离,反映了聚类的效果较好。

6.3 确定K值的其他方法

除手肘法和轮廓系数外,还可以通过交叉验证、信息准则如 AIC 或 BIC 以及实际应用需求来确定最佳的 K 值。

7. K-Means算法的优缺点

7.1 算法的优势分析

K-Means 算法简单、易于实现,计算效率高,尤其适用于处理大规模数据集。这使得它成为实际应用中最常用的聚类算法之一。

7.2 算法的局限性讨论及问题解决方案

K-Means的主要局限性包括对初始质心选择敏感、对噪声和异常值较为敏感、只能处理球形簇等。针对这些问题,可以采取诸如数据预处理、使用 K-Means++ 初始化等策略来改善算法性能。

8. K-Means算法的变体与改进

8.1 K-Means++算法介绍

K-Means++ 是对传统 K-Means 算法的一项重要改进,通过一种特定的概率方法来选择初始质心,可以显著提高聚类的质量和算法的收敛速度。

8.2 针对不同数据集的优化策略及案例分析

为了应对不同类型的数据集和特定的应用场景,K-Means 算法被适当修改和优化。例如,使用加权距离度量在处理非均匀特征的数据集时,或者调整算法参数以适应高维数据。

9. K-Means在文本聚类中的应用

9.1 文本数据的预处理与向量化

文本聚类前的预处理包括清洗文本、分词、去除停用词等步骤。向量化通常通过 TF-IDF 方法实现,它帮助转换文本数据为算法可处理的数值型特征。

9.2 K-Means与TF-IDF的结合应用

结合 K-Means 算法和 TF-IDF 向量化的方法在文本聚类中广泛应用,有效地将相关文档聚集在一起,便于后续的文本分析和信息检索。

9.3 文本聚类的实际案例分析

案例分析可以展示 K-Means 算法在文本聚类中的应用效果,如新闻文章分类、社交媒体帖子分析等,展示如何从大量文本中提取有用信息。

[ 抱个拳,总个结 ]

K-Means 是一种强大而灵活的聚类工具,尽管它有一些局限性,但正确使用时,它能有效地组织大规模数据集,揭示隐藏的模式和群体结构,是数据分析不可或缺的工具。

算法金 | 一文读懂K均值(K-Means)聚类算法的更多相关文章

  1. 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)

    一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...

  2. 一文读懂MySQL的事务隔离级别及MVCC机制

    回顾前文: 一文学会MySQL的explain工具 一文读懂MySQL的索引结构及查询优化 (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论不一定适用于其他版本) 就软件开 ...

  3. 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现

    一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...

  4. [转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图

    MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今 ...

  5. 即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?

    本文引用了“蔷薇Nina”的“Nginx 相关介绍(Nginx是什么?能干嘛?)”一文部分内容,感谢作者的无私分享. 1.引言   Nginx(及其衍生产品)是目前被大量使用的服务端反向代理和负载均衡 ...

  6. 一文读懂HTTP/2及HTTP/3特性

    摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...

  7. 一文读懂高性能网络编程中的I/O模型

    1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...

  8. 从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

    本文原作者阮一峰,作者博客:ruanyifeng.com. 1.引言 HTTP 协议是最重要的互联网基础协议之一,它从最初的仅为浏览网页的目的进化到现在,已经是短连接通信的事实工业标准,最新版本 HT ...

  9. [转帖]一文读懂 HTTP/2

    一文读懂 HTTP/2 http://support.upyun.com/hc/kb/article/1048799/ 又小拍 • 发表于:2017年05月18日 15:34:45 • 更新于:201 ...

  10. [转帖]从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

    从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路   http://www.52im.net/thread-1709-1-2.html     本文原作者阮一峰,作者博客:r ...

随机推荐

  1. Springmvc来做甘特图的显示控制。

    springmvc没有Springboot好用:所以就用了ajax通信来获取数据,这其中有不少坑,我来带大家踩一踩. 1.在控制层中,接口不能直接返回Json格式. 我的解决方法可以使通过map,或者 ...

  2. 力扣784(java)-字母大小写全排列(中等)

    题目: 给定一个字符串 s ,通过将字符串 s 中的每个字母转变大小写,我们可以获得一个新的字符串. 返回 所有可能得到的字符串集合 .以 任意顺序 返回输出. 示例 1: 输入:s = " ...

  3. 码住!Flink Contributor 速成指南

    简介: 不管初衷是什么,Flink 都非常欢迎大家一起建设和完善社区.在开始具体的贡献步骤之前,我们先简要介绍一下参与贡献的几种途径,以及 Clarify 关于开源贡献的一些固有印象. 作者:伍翀(云 ...

  4. 逸仙电商Seata企业级落地实践

    简介: 本文将会以逸仙电商的业务作为背景, 先介绍一下seata的原理, 并给大家进行线上演示, 由浅入深去介绍这款中间件, 以便读者更加容易去理解 Seata 这个中间件. 作者 | 张嘉伟(Git ...

  5. 这样才是代码管理和 Commit 的正确姿势! | 研发效能提升36计

    ​简介:效能提升从小习惯开始,这样才是代码管理和 Commit 的正确姿势! ​ 专栏策划|雅纯 志愿编辑|张晟 软件交付是以代码为中心的交付过程,其中代码的作用有几点:第一,最终的制品要交付成什么样 ...

  6. 如何专业化监控一个Kubernetes集群?

    简介: 本文会介绍 Kubernetes 可观测性系统的构建,以及基于阿里云云产品实现 Kubernetes 可观测系统构建的最佳实践. 作者:佳旭 阿里云容器服务技术专家 引言 Kubernetes ...

  7. 扎克伯格说,Llama3-8B还是太大了,量化、剪枝、蒸馏准备上!

    扎克伯格说,Llama3-8B还是太大了,不适合放到手机中,有什么办法? 量化.剪枝.蒸馏,如果你经常关注大语言模型,一定会看到这几个词,单看这几个字,我们很难理解它们都干了些什么,但是这几个词对于现 ...

  8. dotnet 根据基线包版本实现库版本兼容

    本文来告诉大家如何根据 基线包版本 的功能来实现自动在构建过程中,告诉开发者,当前版本是否存在不兼容旧版本的变更.其不兼容变更包括二进制中断变更和 API 不兼容变更和源代码中断变更.可以让库开发者花 ...

  9. Spring Boot 编写 API 的 10条最佳实践

    10 个最佳实践,让您像专业人士一样编写 Spring Boot API,并结合编码示例和解释: 1. RESTful API 设计原则: 清晰一致的资源命名:使用准确反映 API 管理的资源的名词( ...

  10. js的几个截取

    jsfun(){         let str = '01234567'         let str1         str1 = str.slice(2,5)                 ...