前言

多线程在访问同一个共享变量时很可能会出现并发问题,特别是在多线程对共享变量进入写入时,那么除了加锁还有其他方法避免并发问题吗?本文将详细讲解 ThreadLocal 的使用及其源码。


一、什么是 ThreadLocal?

ThreadLocal 是 JDK 包提供的,它提供了线程本地变量,也就是说,如果你创建了一个 ThreadLocal 变量,那么访问这个变量的每一个线程,都创建这个变量的一个本地副本。

这样可以解决什么问题呢?当多个线程操作这个变量时,实际操作的是自己线程本地内存里的数据,从而避免线程安全问题

如下图,线程表中的每个线程,都有自己 ThreadLocal 变量,线程操作这个变量只是在自己的本地内存在,跟其他线程是隔离的。

二、如何使用 ThreadLocal

ThreadLocal 就是一个简单的容器,使用起来也没有难度,初始化后仅需通过 get/set 方法进行操作即可。

如下代码,开辟两个线程对 ThreadLocal 变量进行操作,获取的值是不同的。

public class FuXing {

    /**
* 初始化ThreadLocal
*/
private static final ThreadLocal<String> myThreadLocal = new ThreadLocal<>(); public static void main (String[] args) {
// 线程1中操作 myThreadLocal
new Thread(()->{
myThreadLocal.set("thread 1"); //set方法设置值
System.out.println(myThreadLocal.get()); //get方法获取值"thread 1"
},"thread 1").start(); // 线程2中操作 myThreadLocal
new Thread(()->{
myThreadLocal.set("thread 2"); //set方法设置值
System.out.println(myThreadLocal.get()); //get方法获取值"thread 2"
},"thread 2").start();
}
}

三、ThreadLocal 实现原理

ThreadLocal 是如何保证操作的对象只被当前线程进行访问呢,我们通过源码一起进行分析学习。

一般分析源码我们都先看它的构造方法是如何初始化的,接着通过对 ThreadLocal 的简单使用,我们知道了关键的两个方法 set/get,所以源码分析也按照这个顺序。

1. 构造方法

泛型类的空参构造,没有什么特别的

2. set 方法源码

源码如下,ThreadLocalMap 是什么呢?由于比较复杂,这里先不做解释,你暂时可以理解为是一个 HashMap,其中 key 为 ThreadLocal 当前对象,value 就是我们设置的值,后面会单独解释源码。

public void set(T value) {
//获取本地线程
Thread t = Thread.currentThread(); //获取当前线程下的threadLocals对象,对象类型是ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null)
//获取到则添加值
map.set(this, value);
else
//否则初始化ThreadLocalMap --第一次设置值
createMap(t, value);
}
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}

3. get 方法源码

public T get() {
//获取本地线程
Thread t = Thread.currentThread(); //获取当前线程下的threadLocals对象,对象类型是ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null) { //通过当前的ThreadLocal作为key去获取对应value
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
//@SuppressWarnings忽略告警的注解
//"unchecked"表示未经检查的转换相关的警告,通常出现在泛型编程中
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
//threadLocals为空或它的Entry为空时,需要对其进行初始化操作。
return setInitialValue();
}
private T setInitialValue() {
//初始化为null
T value = initialValue(); //获取当前线程
Thread t = Thread.currentThread(); //获取当前线程下的threadLocals对象,对象类型是ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value); //返回的其实就是个null
return value;
}
protected T initialValue() {
return null;
}

4. remove 方法源码

核心也是 ThreadLocalMap 中的 remove 方法,会删除 key 对应的 Entry,具体源码后面统一在 ThreadLocalMap 源码中分析。

public void remove() {
//获取当前线程下的threadLocals对象,对象类型是ThreadLocalMap
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
//通过当前的ThreadLocal作为key调用remove
m.remove(this);
}

5. ThreadLocalMap 源码

ThreadLocalMap 是 ThreadLocal 的一个静态内部类,看了上面的几个源码解释,可以了解到 ThreadLocalMap 其实才是核心。

简单的说,ThreadLocalMap 与 HashMap 类似,如,初始容量 16,一定范围内扩容,Entry 数组存储等,那它与 HashMap 有什么不同呢,下面将对源码进行详解。

ThreadLocalMap 的底层数据结构:

5.1 常量

//初始容量,一定是2的幂等数。
private static final int INITIAL_CAPACITY = 16; // Entry 数组
private Entry[] table; //table的长度
private int size = 0; //扩容阈值
private int threshold; //设置扩容阈值,长度的 2 / 3
private void setThreshold(int len) {
threshold = len * 2 / 3;
} //计算下一个存储位置
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
} // 计算前一个存储位置
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}

5.2 Entry 相关源码

由于 Entry 是底层核心源码,所有的操作几乎都是围绕着它来进行的,所以关于 Entry 的源码会比较多,我一一拆分进行分析讲解。

静态内部类 Entry

这个是 ThreadLocalMap 的底层数据结构,Entry 数组,每个 Entry 对象,这里的 Entry 继承了 WeakReference,关于弱引用不懂得,可以看我的另一篇文章《Java 引用》

然后将 Entry 的 key 设置承了 弱引用,这有什么作用呢?作用是当 ThreadLocal 失去强引用后,在系统GC时,只要发现弱引用,不管系统堆空间使用是否充足,都会回收掉 key,进而 Entry 被内部清理。

//静态内部类Entry
static class Entry extends WeakReference<ThreadLocal<?>> {
Object value;
Entry(ThreadLocal<?> k, Object v) {
// key为弱引用
super(k);
value = v;
}
}

获取 Entry

拿到当前线程中对应的 ThreadLocal 所在的 Entry,找不到的话会重新寻找,因为当前的 Entry 可能已经扩容,扩容后会重新计算索引位置,详情见扩容机制源码。

源码中的计算索引位置的算法我没有解释,这个我会放在后面解释,涉及到了如何解决 Hash 冲突的问题,这个和我们熟知的 HashMap 是不同的。

//获取Entry
private Entry getEntry(ThreadLocal<?> key) {
//计算索引位置
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i]; //找到了就返回Entry
if (e != null && e.get() == key)
return e;
else
//没找到则重新寻找,因为可能发生扩容导致索引重新计算
return getEntryAfterMiss(key, i, e);
} //重新获取Entry --从当前索引i的位置向后搜索
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length; //循环遍历,获取对应的 ThreadLocal 所在的 Entry
while (e != null) {
//获取Entry对象的弱引用,WeakReference的方法
ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
//清除无效 Entry,详解见下方
expungeStaleEntry(i);
else
//计算下一个索引位置
i = nextIndex(i, len); //可以理解为指针后移
e = tab[i];
}
return null;
}

清除无效 Entry

expunge 删除,抹去,stale 陈旧的,没有用的

第 1 个方法:

根据索引删除对应的桶位,并从给定索引开始,遍历清除无效的 Entry,何为无效?就是当 Entry 的 key 为 null 时,代表 key 已经被 GC 掉了,对应的 Entry 就无效了。

第 2 个方法:

删除Entry数组中所有无效的Entry,方法中的e.get() == null,代表key被回收了。

第 3 个方法:

清除一些失效桶位,它执行对数数量的扫描,向后遍历logn个位置,如8,4,2,1。

方法 2、3 最后都通过方法 1 进行桶位的删除。

//根据索引删除对应的桶位
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length; //删除该桶位的元素,并将数组长度减1
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--; Entry e;
int i;
//从当前索引开始,直到当前 Entry为null才会停止遍历
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
//获取Entry对象的弱引用,WeakReference的方法
ThreadLocal<?> k = e.get();
if (k == null) {//说明key已失效
//删除该桶位的元素,并将数组长度减1
e.value = null;
tab[i] = null;
size--;
} else {//说明key有效,需要将其Rehash
//计算rehash后索引位置
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
//移动元素位置,若rehash后索引位置有其他元素,则继续向后移动,直至为空
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
//直到当前 Entry为null才会停止遍历,i为其索引
return i;
} //删除Entry数组中所有无效的Entry,用于rehash时
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
//获取Entry对象的弱引用,Entry不为空而弱引用为空,代表被GC了
if (e != null && e.get() == null)
//根据索引删除对应的桶位
expungeStaleEntry(j);
}
} //清楚一些清除桶位,它执行对数数量的扫描
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
//向后遍历logn个位置,如8,4,2,1
do {
i = nextIndex(i, len);
Entry e = tab[i];
//获取Entry对象的弱引用,Entry不为空而弱引用为空,代表被GC了
if (e != null && e.get() == null) {
n = len;
removed = true;
//根据索引删除对应的桶位
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);//对数递减
return removed;
}

替换无效 Entry

替换失效元素,用在对 Entry 进行 set 操作时,如果 set 的 key 是失效的,则需要用新的替换它。

这里不仅仅处理了当前的失效元素,还会将其他失效的元素进行清理,因为这里是当 key 为 null 时才进行的替换操作。

那什么时候 key 为 null 呢?这个除了主动的 remove 之外,就只有 ThreadLocal 的弱引用被 GC 掉了。

这里是在 set 操作时出现的,还出现了 key 为 null 的无效元素,代表已经之前发生过 GC 了,很可能Entry 数组中还可能出现其他无效元素,所以源码中会出现向前遍历和向后遍历的情况。

向前遍历好理解,就是通过遍历找第一个失效元素的索引。向后遍历比较难理解,这里我先简单说一下 ThreadLocal 用的开放地址的方式来解决 hash 冲突的,具体原理我后面会在讲 hash 冲突时单独讲。

这种情况下,很可能当前的失效元素对应的并不是 hascode 在 staleSlot 的Entry。因为 hash 冲突后,Entry 会后移,那么此元素的 hascode 对应的桶位很有可能往后移了,所以我们要向后找到它,并且和当前的 staleSlot 进行替换。

如果不进行此操作的话,很有可能在 set 操作时,在 ThreadLocalMap 中会出现两个桶位,都被某个ThreadLocal 指向。

private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e; //记录失效元素的索引
int slotToExpunge = staleSlot;
//从失效元素位置向前遍历,直到当前 Entry为null才会停止遍历
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
//更新失效元素的索引,目的是找第一个失效的元素
slotToExpunge = i; //从失效元素向后遍历
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
//找到了对应key
if (k == key) {
//更新该位置的value
e.value = value;
//把失效元素换到当前位置
tab[i] = tab[staleSlot];
//把当前Entry移动到失效元素位置
tab[staleSlot] = e; //slotToExpunge是第一个失效元素的索引,若条件成立,向前没有失效元素
if (slotToExpunge == staleSlot)
//从当前索引开始,清理失效元素
slotToExpunge = i; // 清理失效元素,详情见清除无效Entry相关源码
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
} //代表向前遍历没有找到第一个失效元素的位置
if (k == null && slotToExpunge == staleSlot)
//所以条件成立的i是向后遍历的的第一个失效元素的位置
slotToExpunge = i;
} //没找到key,则在失效元素索引的位置,新建Entry
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value); // 条件成立说明在找到了staleSlot前面找到了其他的失效元素
if (slotToExpunge != staleSlot) // 清理失效元素,详情见清除无效Entry相关源码
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}

5.3 构造方法

还有一个基于 parentMap 的构造方法,由于目前仅在创建 InheritableThreadLocal 时调用,关于它这里不详细展开,后续会针对该类进行详解。

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
// 初始化数组
table = new Entry[INITIAL_CAPACITY]; //计算存储位置
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); //存储元素,并将size设置为1
table[i] = new Entry(firstKey, firstValue);
size = 1; //设置扩容阈值
setThreshold(INITIAL_CAPACITY);
}

5.4 set 方法源码

设置 key,vlaue,key 就是 ThreadLocal 对象。

private void set(ThreadLocal<?> key, Object value) {
Entry[] tab = table;
int len = tab.length;
//计算索引位置
int i = key.threadLocalHashCode & (len-1); //从当前索引开始,直到当前Entry为null才会停止遍历
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get(); //如果key存在且等于当前key,代表之前存在的,直接覆盖
if (k == key) {
e.value = value;
return;
}
//如果key不存在,说明已失效,需要替换,详情见替换无效Entry源码
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
} //没有key则新建一个Entry即可
tab[i] = new Entry(key, value);
int sz = ++size; //清理一些失效元素,若清理失败且达到常量中的扩容阈值,则进行rehash操作
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
} //删除Entry数组中所有无效的Entry并扩容
private void rehash() {
//删除Entry数组中所有无效的Entry
expungeStaleEntries();
if (size >= threshold - threshold / 4)
//扩容,详情见下面的扩容机制源码
resize();
}

5.5 remove 方法源码

删除key对应的entry

private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
//计算存储位置
int i = key.threadLocalHashCode & (len-1); //从当前索引开始,直到当前Entry为null才会停止遍历
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
//清除该对象的强引用,下次在通过get方法获取引用则返回null
e.clear(); //清除无效元素
expungeStaleEntry(i);
return;
}
}
}

5.6 扩容机制源码

将元素转移到新的Entry 数组,长度是原来的两倍。

private void resize() {
//创建原数组长度两倍的新数组
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0; //计算当前元素数量
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal<?> k = e.get();
if (k == null) { //key失效则值也顺便设为null
e.value = null; // Help the GC
} else {
//重新计算索引位置
int h = k.threadLocalHashCode & (newLen - 1); //移动元素位置,若rehash后索引位置有其他元素,则继续向后移动,直至为空
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}

四、ThreadLocalMap 的 Hash 冲突

Java 中大部分都是使用拉链法法解决 Hash 冲突的,而 ThreadLocalMap 是通过开放地址法来解决 Hash 冲突,这两者有什么不同,下面我讲介绍一下。

1. 拉链法

拉链法也叫链地址法,经典的就是 HashMap 解决 Hash 冲突的方法,如下图。将所有的 hash 值相同的元素组成一个链表,除此外 HashMap 还进行了链表转红黑树的优化。

2. 开放地址法

原理是当发生hash冲突时,不引入额外的数据结构,会以当前地址为基准,通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测和多次哈希等,ThreadLocalMap 使用的是线性探测法。

简单说,就是一旦发生了冲突,就去探测寻找下一个空的散列地址,根据上面的源码也能大致了解该处理方式。

源码中的公式是key.threadLocalHashCode & (length - 1)

公式类似 HashMap 的寻址算法,详情见HashMap源码,由于数组长度是 2 的 n 次幂,所以这里的与运算就是取模,得到索引 i,这样做是为了分布更均匀,减少冲突产生。

threadLocalHashCode 源码如下:

private final int threadLocalHashCode = nextHashCode();

//初始化线程安全的Integer
private static AtomicInteger nextHashCode =
new AtomicInteger(); //斐波那契散列乘数 --结果分布更均匀
private static final int HASH_INCREMENT = 0x61c88647; //自增返回下一个hash code
private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT);
}

线性探测法的缺点:

  1. 不适用于存储大量数据,容易产生“聚集现象”;
  2. 删除元素需要清除无效元素;

五、注意事项

1. 关于内存泄漏

在了解了 ThreadLocal 的内部实现以后,我们知道了数据其实存储在 ThreadLocalMap 中。这就意味着,线程只要不退出,则引用一直存在。

当线程退出时,Thread 类会对一些资源进行清理,其中就有threadLocals,源码如下:

private void exit() {
if (group != null) {
group.threadTerminated(this);
group = null;
}
target = null;
//加速一些资源的清理
threadLocals = null;
inheritableThreadLocals = null;
inheritedAccessControlContext = null;
blocker = null;
uncaughtExceptionHandler = null;
}

因此,当使用的线程一直没有退出(如使用线程池),这时如果将一些大对象放入 ThreadLocal 中,且没有及时清理,就可能会出现内存泄漏的风险

所以我们要养成习惯每次使用完 ThreadLocal 都要调用 remove 方法进行清理。

2. 关于数据混乱

通过对内存泄漏的解释,我们了解了当使用的线程一直没有退出,而又没有即使清理 ThreadLocal,则其中的数据会一直存在。

这除了内存泄漏还有什么问题呢?我们在开发过程中,请求一般都是通过 Tomcat 处理,而其在处理请求时采用的就是线程池。

这就意味着请求线程被 Tomcat 回收后,不一定会立即销毁,如果不在请求结束后主动 remove 线程中的 ThreadLocal 信息,可能会影响后续逻辑,拿到脏数据。

我在开发过程中就遇到了这个问题,详情见ThreadLocal中的用户信息混乱问题。所以无论如何,在每次使用完 ThreadLocal 都要调用 remove 方法进行清理。

3. 关于继承性

同一个 ThreadLocal 变量,在父线程中被设置值后,在子线程其实是获取不到的。通过源码我们也知道,我们操作的都是当前线程下的 ThreadLocalMap ,所以这其实是正常的。

测试代码如下:

public class FuXing {

    /**
* 初始化ThreadLocal
*/
private static final ThreadLocal<String> myThreadLocal = new ThreadLocal<>(); public static void main (String[] args) {
myThreadLocal.set("father thread");
System.out.println(myThreadLocal.get()); //father thread new Thread(()->{
System.out.println(myThreadLocal.get()); //null
},"thread 1").start();
}
}

那么这可能会导致什么问题呢?比如我们在本服务调用外部服务,或者本服务开启新线程去进行异步操作,其中都无法获取 ThreadLocal 中的值。

虽然都有其他解决方法,但是有没有让子线程也能直接获取到父线程的 ThreadLocal 中的值呢?这就用到了 InheritableThreadLocal。

public class FuXing {

    /**
* 初始化ThreadLocal
*/
private static final InheritableThreadLocal<String> myThreadLocal
= new InheritableThreadLocal<>(); public static void main (String[] args) {
myThreadLocal.set("father thread");
System.out.println(myThreadLocal.get()); //father thread new Thread(()->{
System.out.println(myThreadLocal.get()); //father thread
},"thread 1").start();
}
}

InheritableThreadLocal 就是继承了 ThreadLocal,在创建和获取变量实例 inheritableThreadLocals 而不再是threadLocals,源码如下。

public class InheritableThreadLocal<T> extends ThreadLocal<T> {

    protected T childValue(T parentValue) {
return parentValue;
} ThreadLocalMap getMap(Thread t) {
return t.inheritableThreadLocals;
} void createMap(Thread t, T firstValue) {
t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
}
}

总结

本文主要讲述了 ThreadLocal 的使用以及对其源码进行了详解,了解了 ThreadLocal 可以线程隔离的原因。通过对 ThreadLocalMap 的分析,知道了其底层数据结构和如何解决 Hash 冲突的。

最后通过对 ThreadLocal 特点的分析,了解到有哪些需要注意的点,避免以后开发过程中遇到类似问题,若发现其他问题欢迎指正交流。


参考:

[1] 翟陆续/薛宾田. Java并发编程之美.

[2] 葛一鸣/郭超. 实战Java高并发程序设计.

[3] 靳宇栋. Hello 算法.

ThreadLocal 源码浅析的更多相关文章

  1. spring源码浅析——IOC

    =========================================== 原文链接: spring源码浅析--IOC   转载请注明出处! ======================= ...

  2. 【深入浅出jQuery】源码浅析--整体架构

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

  3. 【深入浅出jQuery】源码浅析2--奇技淫巧

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

  4. Java多线程9:ThreadLocal源码剖析

    ThreadLocal源码剖析 ThreadLocal其实比较简单,因为类里就三个public方法:set(T value).get().remove().先剖析源码清楚地知道ThreadLocal是 ...

  5. Struts2源码浅析-ConfigurationProvider

    ConfigurationProvider接口 主要完成struts配置文件 加载 注册过程 ConfigurationProvider接口定义 public interface Configurat ...

  6. (转)【深入浅出jQuery】源码浅析2--奇技淫巧

    [深入浅出jQuery]源码浅析2--奇技淫巧 http://www.cnblogs.com/coco1s/p/5303041.html

  7. HashSet其实就那么一回事儿之源码浅析

    上篇文章<HashMap其实就那么一回事儿之源码浅析>介绍了hashMap,  本次将带大家看看HashSet, HashSet其实就是基于HashMap实现, 因此,熟悉了HashMap ...

  8. Android 手势识别类 ( 三 ) GestureDetector 源码浅析

    前言:上 篇介绍了提供手势绘制的视图平台GestureOverlayView,但是在视图平台上绘制出的手势,是需要存储以及在必要的利用时加载取出手势.所 以,用户绘制出的一个完整的手势是需要一定的代码 ...

  9. Android开发之Theme、Style探索及源码浅析

    1 背景 前段时间群里有伙伴问到了关于Android开发中Theme与Style的问题,当然,这类东西在网上随便一搜一大把模板,所以关于怎么用的问题我想这里也就不做太多的说明了,我们这里把重点放在理解 ...

  10. 【深入浅出jQuery】源码浅析2--使用技巧

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

随机推荐

  1. 学会使用 NumPy:基础、随机、ufunc 和练习测试

    NumPy NumPy 是一个用于处理数组的 Python 库.它代表"Numerical Python". 基本 随机 ufunc 通过测验测试学习 检验您对 NumPy 的掌握 ...

  2. Competition Set - Codeforces

    这里记录的是这个账号的比赛情况. Codeforces Round 942 (Div. 1) Solved:6/8,AB1B2CDE1 2645-> A 题意:现有 \(a_i\) 张写有 \( ...

  3. Data Lake_理解数据湖

    Pentaho首席技术官James Dixon创造了"数据湖"一词.它把数据集市描述成一瓶水(清洗过的,包装过的和结构化易于使用的).而数据湖更像是在自然状态下的水,数据流从源系统 ...

  4. 使用Lagent AgentLego 搭建智能体-书生浦语大模型实战营第二期第6节作业

    书生浦语大模型实战营第二期第6节作业 对于这个作业,这里只给出截图,不给详细过程,因为确实没有什么好写的,会做Demo那个作业就会做这个作业.具体的步骤可以查看官方教程. 基础作业 完成 Lagent ...

  5. WebKit中WTFMove实现

    WTFMove定义位置: WTF/Source/wtf/StdLibExtras.h,其定义如下: #define WTFMove(value) std::move<WTF::CheckMove ...

  6. XML Schema(XSD)详解:定义 XML 文档结构合法性的完整指南

    XML Schema描述了 XML 文档的结构.XML Schema语言也称为 XML Schema Definition(XSD). <?xml version="1.0" ...

  7. 介绍几种常用的Oracle客户端工具

    首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485212&idx=1 ...

  8. SQL使用ROW_NUMBER() OVER函数自动生成序列号

    语法:ROW_NUMBER() OVER(PARTITION BY COLUMN ORDER BY COLUMN) 简单的说ROW_NUMBER()从1开始,为每一条分组记录返回一个数字,这里的ROW ...

  9. next-route

    在目录结构中,我们精心创建的每一个文件最终都会经过处理,转化为相应的页面路由.然而,值得注意的是,某些特殊文件格式在生成过程中并不会被当作路由路径来处理. app |-auth login page. ...

  10. ENVI自动地理配准:GCP地面控制点的自动产生

      本文介绍基于ENVI软件,利用"Image Registration Workflow"工具实现栅格遥感影像自动寻找地面控制点从而实现地理配准的方法.   在ENVI手动地理配 ...