本文是利用pytorch自定义CNN网络系列的第二篇,主要介绍构建网络前数据集的准备,关于本系列的全文见这里

笔者的运行设备与软件:CPU (AMD Ryzen 5 4600U) + pytorch (1.13,CPU版) + jupyter;

本文所用到的资源:链接:https://pan.baidu.com/s/1WgW3IK40Xf_Zci7D_BVLRg 提取码:1212

在训练网络模型时,我们可以使用torchvision库自带的数据集(torchvision.datasets),也可以使用自己的数据集。实际运用中一般都是使用自己的数据集,本文就讲一下该如何准备自己的数据。这里呢,笔者偷了个懒,我使用的是下载好的FashionMNIST数据集,刚好这里也讲一下如何将.ubyte文件转换为.jpg文件。

1. 一个例子

首先来看一个例子:

import os
import cv2
import torchvision.datasets.mnist as mnist root="D:\\Users\\CV learning\\pytorch\\FashionMNIST\\raw\\"
# 读取训练图像和对应标签,并将其转换为Tensor类型
train_set=(mnist.read_image_file(root+"train-images-idx3-ubyte"),
mnist.read_label_file(root+"train-labels-idx1-ubyte"))
# 读取测试图像和对应标签,并将其转换为Tensor类型
test_set=(mnist.read_image_file(root+"t10k-images-idx3-ubyte"),
mnist.read_label_file(root+"t10k-labels-idx1-ubyte"))
# 输出训练数据和测试数据的相关信息
print("训练图像数据集的有关信息---",train_set[0].size())
print("测试图像数据集的有关信息---",test_set[0].size()) #定义一个函数将数据集转换为图像
def convert_to_img(train=True):
if train:
f = open(root+"train.txt", "w")
data_path = root+"train\\"
#判断是否存在data_path文件夹,若不存在则创建一个
if not os.path.exists(data_path):
os.makedirs(data_path)
#将image、label组合成带有序列的迭代器,并遍历;保存图像,并保存图像地址和标签在.txt中
for i, (img, label) in enumerate(zip(train_set[0], train_set[1])):
img_path = data_path+str(i)+".jpg"
cv2.imwrite(img_path, img.numpy())
f.write(img_path+'---'+str(int(label))+'\n')
f.close()
else:
f = open(root+"test.txt", "w")
data_path = root+"test\\"
#判断是否存在data_path文件夹,若不存在则创建一个
if not os.path.exists(data_path):
os.makedirs(data_path)
#将image、label组合成带有序列的迭代器,并遍历;保存图像,并保存图像地址和标签在.txt中
for i, (img, label) in enumerate(zip(test_set[0], test_set[1])):
img_path = data_path+str(i)+'.jpg'
cv2.imwrite(img_path, img.numpy())
f.write(img_path+'---'+str(int(label))+'\n')
f.close() convert_to_img(True)
convert_to_img(False)
import torch
import cv2
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader root = "D:\\Users\\CV learning\\pytorch\\FashionMNIST\\raw\\" class MyDataset(Dataset):
def __init__(self, txt, transform = None):
with open(txt, 'r') as ft:
imgs = []
for line in ft:
line = line.strip('\n')
words = line.split('---')
imgs.append((words[0], int(words[1])))
self.imgs = imgs
self.transform = transform def __getitem__(self, index):
fn, label = self.imgs[index]
img = cv2.imread(fn, cv2.IMREAD_COLOR)
if self.transform is not None:
img = self.transform(img)
return img, label def __len__(self):
return len(self.imgs) train_data = MyDataset(root+'train.txt', transform=transforms.ToTensor())
test_data= MyDataset(root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)

运行结果:



从上面的例子可以看出,数据集的准备就是将不适用于pytorch的数据转换为适用的数据类型,即Tensor;当训练样本数量太过庞大时,需要分成多个Batch来训练,因此就需要设置batch_size的大小。上个例子中的数据并没有在GPU中建立副本,通常为了充分调用GPU,还需要设置一些如num_workers、pin_memory等参数。
具体而言,数据集的准备与torch.utils.data模块下DataSet、DataLoader和Sampler类有关,下面让我们来看看这三个类之间的关系。

2. DataSet、DataLoader和Sampler

一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系,这篇文章讲简单易懂,因此就直接拿来用了。

2.1. 自上而下理解三者关系

首先我们看一下DataLoader.next的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据)。

class DataLoader(object):
... def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter) # Sampler
batch = self.collate_fn([self.dataset[i] for i in indices]) # Dataset
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch

在阅读上面代码前,我们可以假设我们的数据是一组图像,每一张图像对应一个index,那么如果我们要读取数据就只需要对应的index即可,即上面代码中的indices,而选取index的方式有多种,有按顺序的,也有乱序的,所以这个工作需要Sampler完成,现在你不需要具体的细节,后面会介绍,你只需要知道DataLoader和Sampler在这里产生关系。
那么Dataset和DataLoader在什么时候产生关系呢?没错就是下面一行。我们已经拿到了indices,那么下一步我们只需要根据index对数据进行读取即可了。
再下面的if语句的作用简单理解就是,如果pin_memory=True,那么Pytorch会采取一系列操作把数据拷贝到GPU,总之就是为了加速。
综上可以知道DataLoader,Sampler和Dataset三者关系如下:

在阅读后文的过程中,你始终需要将上面的关系记在心里,这样能帮助你更好地理解。

2.2. Sampler

参数传递
要更加细致地理解Sampler原理,我们需要先阅读一下DataLoader 的源代码,如下:

class DataLoader(object):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=default_collate,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None)

可以看到初始化参数里有两种sampler:samplerbatch_sampler,都默认为None。前者的作用是生成一系列的index,而batch_sampler则是将sampler生成的indices打包分组,得到一个又一个batch的index。例如下面示例中,BatchSamplerSequentialSampler生成的index按照指定的batch size分组。

>>>in : list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
>>>out: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

Pytorch中已经实现的Sampler有如下几种:

  • SequentialSampler
  • RandomSampler
  • WeightedSampler
  • SubsetRandomSampler

需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解,这里只做总结:

  • 如果你自定义了batch_sampler那么这些参数都必须使用默认值:batch_sizeshuffle,samplerdrop_last.
  • 如果你自定义了sampler,那么shuffle需要设置为False
  • 如果samplerbatch_sampler都为None,那么batch_sampler使用Pytorch已经实现好的BatchSampler,而sampler分两种情况:
    • shuffle=True,则sampler=RandomSampler(dataset)
    • shuffle=False,则sampler=SequentialSampler(dataset)

2.3. 如何自定义Sampler和BatchSampler?

仔细查看源代码其实可以发现,所有采样器其实都继承自同一个父类,即Sampler,其代码定义如下:

class Sampler(object):
r"""Base class for all Samplers.
Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
way to iterate over indices of dataset elements, and a :meth:`__len__` method
that returns the length of the returned iterators.
.. note:: The :meth:`__len__` method isn't strictly required by
:class:`~torch.utils.data.DataLoader`, but is expected in any
calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
""" def __init__(self, data_source):
pass def __iter__(self):
raise NotImplementedError def __len__(self):
return len(self.data_source)

所以你要做的就是定义好__iter__(self)函数,不过要注意的是该函数的返回值需要是可迭代的。例如SequentialSampler返回的是iter(range(len(self.data_source)))
另外BatchSampler与其他Sampler的主要区别是它需要将Sampler作为参数进行打包,进而每次迭代返回以batch size为大小的index列表。也就是说在后面的读取数据过程中使用的都是batch sampler。

2.4. Dataset

Dataset定义方式如下:

class Dataset(object):
def __init__(self):
... def __getitem__(self, index):
return ... def __len__(self):
return ...

上面三个方法是最基本的,其中__getitem__是最主要的方法,它规定了如何读取数据。但是它又不同于一般的方法,因为它是python built-in方法,其主要作用是能让该类可以像list一样通过索引值对数据进行访问。假如你定义好了一个dataset,那么你可以直接通过dataset[0]来访问第一个数据。在此之前我一直没弄清楚__getitem__是什么作用,所以一直不知道该怎么进入到这个函数进行调试。现在如果你想对__getitem__方法进行调试,你可以写一个for循环遍历dataset来进行调试了,而不用构建dataloader等一大堆东西了,建议学会使用ipdb这个库,非常实用!!!以后有时间再写一篇ipdb的使用教程。另外,其实我们通过最前面的Dataloader的__next__函数可以看到DataLoader对数据的读取其实就是用了for循环来遍历数据,不用往上翻了,我直接复制了一遍,如下:

class DataLoader(object):
... def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter)
batch = self.collate_fn([self.dataset[i] for i in indices]) # this line
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch

我们仔细看可以发现,前面还有一个self.collate_fn方法,这个是干嘛用的呢?在介绍前我们需要知道每个参数的意义:

  • indices: 表示每一个iteration,sampler返回的indices,即一个batch size大小的索引列表
  • self.dataset[i]: 前面已经介绍了,这里就是对第i个数据进行读取操作,一般来说self.dataset[i]=(img, label)

看到这不难猜出collate_fn的作用就是将一个batch的数据进行合并操作。默认的collate_fn是将img和label分别合并成imgs和labels,所以如果你的__getitem__方法只是返回 img, label,那么你可以使用默认的collate_fn方法,但是如果你每次读取的数据有img, box, label等等,那么你就需要自定义collate_fn来将对应的数据合并成一个batch数据,这样方便后续的训练步骤。
如果大家对这三个类的源码感兴趣可以阅读这篇文章:PyTorch源码解析与实践(1):数据加载Dataset,Sampler与DataLoader

3. 内容参考

  1. pytorch: 准备、训练和测试自己的图片数据 - denny402 - 博客园
  2. CNN训练前的准备:PyTorch处理自己的图像数据(Dataset和Dataloader)_pytorch训练自己的图片_Cyril_KI的博客-CSDN博客
  3. 一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系
  4. PyTorch源码解析与实践(1):数据加载Dataset,Sampler与DataLoader

利用pytorch自定义CNN网络(二):数据集的准备的更多相关文章

  1. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  2. Pytorch写CNN

    用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1 ...

  3. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  4. 07_利用pytorch的nn工具箱实现LeNet网络

    07_利用pytorch的nn工具箱实现LeNet网络 目录 一.引言 二.定义网络 三.损失函数 四.优化器 五.数据加载和预处理 六.Hub模块简介 七.总结 pytorch完整教程目录:http ...

  5. 6.keras-基于CNN网络的Mnist数据集分类

    keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...

  6. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  7. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet

    上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...

  8. Pytorch和CNN图像分类

    Pytorch和CNN图像分类 PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速 ...

  9. pytorch自定义RNN结构(附代码)

    pytorch自定义LSTM结构(附代码) 有时我们可能会需要修改LSTM的结构,比如用分段线性函数替代非线性函数,这篇博客主要写如何用pytorch自定义一个LSTM结构,并在IMDB数据集上搭建了 ...

  10. Keras如何构造简单的CNN网络

    1. 导入各种模块 基本形式为: import 模块名 from 某个文件 import 某个模块 2. 导入数据(以两类分类问题为例,即numClass = 2) 训练集数据data 可以看到,da ...

随机推荐

  1. 代码打包的可视化数据分析图: webpack-bundle-analyzer 的使用

    先看webpack-bundle-analyzer的效果图(官方效果图): 通过使用webpack-bundle-analyzer可以看到项目各模块的大小,可以按需优化 1.先安装 npm insta ...

  2. vue全家桶进阶之路27:Vue.js 3.0的下载和安装

    使用脚手架vue-cli创建vue3项目,创建前需要准备以下: 1.node.js环境 见:https://www.cnblogs.com/beichengshiqiao/p/17251233.htm ...

  3. [学习笔记]解决因C#8.0的语言特性导致EFCore实体类型映射的错误

    今天下午在排查一个EF问题时,遇到了个很隐蔽的坑,特此记录. 问题 使用ef执行Insert对象到某表时报错,此对象的Address为空: 不能将值 NULL 插入列 'Address',表 'dbo ...

  4. SpringBoot开发简单接口流程

    SpringBoot开发接口 初始化 新建项目 (1)使用 IDEA 的过程,新建Project,左侧选 Spring Initializr,点Next (2)选 8 版本,点Next (3)左侧选择 ...

  5. Vulhub靶场的搭建

    Vulhub靶场的搭建(基于centos7) 1>简述 很多人在搭建Vulhub靶场的时候,可能也搜到过许多的文章,但是大多数的文章只是有一个流程,对其中的原理,步骤没有进行详细的说明,这也就导 ...

  6. 浅聊一下 C#程序的 内存映射文件 玩法

    一:背景 1. 讲故事 前段时间训练营里有朋友问 内存映射文件 是怎么玩的?说实话这东西理论我相信很多朋友都知道,就是将文件映射到进程的虚拟地址,说起来很容易,那如何让大家眼见为实呢?可能会难倒很多人 ...

  7. JavaCV的摄像头实战之八:人脸检测

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<JavaCV的摄像头实战> ...

  8. Pinot2:一款强大的无人机操作系统

    目录 1. 引言 1.1. 背景介绍 1.2. 文章目的 1.3. 目标受众 2. 技术原理及概念 2.1. 基本概念解释 2.2. 技术原理介绍 2.3. 相关技术比较 3. 实现步骤与流程 3.1 ...

  9. 2023-06-27:redis中什么是缓存雪崩?该如何解决?

    2023-06-27:redis中什么是缓存雪崩?该如何解决? 答案2023-06-27: 缓存雪崩是指当缓存层承载大量请求并有效保护存储层时,如果缓存层由于某些原因无法提供服务,例如缓存数据大面积失 ...

  10. Leecode SQL

    618 学生地理信息报告 一所学校有来自亚洲.欧洲和美洲的学生.写一个查询语句实现对大洲(continent) 列的透视表操作,使得每个学生按照姓名的字母顺序依次排列在对应的大洲下面.输出的标题应依次 ...