#矩阵乘法,线段树#CF575A Fibonotci
分析
\(K\)那么大肯定是矩阵乘法,
带修改可以用线段树单点修改,
转移矩阵类似于斐波那契数列,
这题思维难度不大,细节很多,需要很长时间QWQ
时间复杂度\(O(mlog_2K)\),具体注释在代码中
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=50011; typedef long long lll;
struct rec{lll x; int y,type;}q[N<<1];
struct maix{int p[2][2];}A[N],B[N],ANS,w[N<<2],W[61];
int mod,a[N],n,m; lll pos;
inline lll iut(){
rr lll ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B,int t=2){
rr maix C;
for (rr int i=0;i<t;++i) for (rr int j=0;j<2;++j)
C.p[i][j]=mo(1ll*A.p[i][0]*B.p[0][j]%mod,1ll*A.p[i][1]*B.p[1][j]%mod);
return C;
}
inline void build(int k,int l,int r){
if (l==r){
w[k]=A[l];
return;
}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=mul(w[k<<1],w[k<<1|1]);
}
inline void update(int k,int l,int r,int x){
if (l==r){
w[k]=B[x];
return;
}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x);
else update(k<<1|1,mid+1,r,x);
w[k]=mul(w[k<<1],w[k<<1|1]);
}
bool cmp(rec x,rec y){return x.x<y.x;}
inline maix doit(lll x){
rr maix ANS;
ANS.p[0][0]=1,ANS.p[1][0]=0,
ANS.p[0][1]=0,ANS.p[1][1]=1;
for (rr int i=0;i<60;++i)
if ((x>>i)&1) ANS=mul(ANS,W[i]);
return ANS;
}
signed main(){
pos=iut(),mod=iut(),n=iut(),ANS.p[0][1]=1;
for (rr int i=0;i<n;++i) a[i]=iut()%mod;
for (rr int i=1;i<=n;++i) A[i].p[1][1]=a[i%n],A[i].p[0][1]=a[i-1],A[i].p[1][0]=1,B[i]=A[i];
m=iut();
for (rr int i=1;i<=m;++i) q[i+m].x=(q[i].x=iut())+1,q[i+m].y=q[i].y=iut()%mod,q[i].type=1;//一个特例影响两个矩阵
build(1,1,n),sort(q+1,q+1+m*2,cmp),W[0]=w[1];
for (m<<=1;m&&q[m].x>pos;--m); rr lll now,NOW=0;
for (rr int i=1;i<60;++i) W[i]=mul(W[i-1],W[i-1]);
for (rr int l=1,r;l<=m;l=r+1){
for (now=(q[r=l].x-1)/n;r<m&&now==(q[r+1].x-1)/n;++r);//同一个周期
ANS=mul(ANS,doit(now-NOW),1),NOW=now;//中间段快速幂跳过
for (rr int i=l;i<=r;++i){
rr int POS=(q[i].x-1)%n+1;
B[POS].p[q[i].type][1]=q[i].y;
update(1,1,n,POS);
}
if (now==pos/n) break; ANS=mul(ANS,w[1],1),++NOW;
for (rr int i=l;i<=r;++i){
rr int POS=(q[i].x-1)%n+1;
B[POS]=A[POS],update(1,1,n,POS);//恢复原样
}
}
now=pos/n,ANS=mul(ANS,doit(now-NOW),1);
for (rr int i=1;i<=pos%n;++i) ANS=mul(ANS,B[i],1);//散的矩阵单独乘
return !printf("%d",ANS.p[0][0]);//输出前一个(一开始[0,1]代表的是第0个矩阵)
}
#矩阵乘法,线段树#CF575A Fibonotci的更多相关文章
- THUSCH 2017 大魔法师(矩阵乘法+线段树)
题意 https://loj.ac/problem/2980 思路 区间修改考虑用线段树维护.由于一段区间的 \(A,B,C\) 可以表示成由原来的 \(A,B,C\) 乘上带上系数再加上某一个某个常 ...
- Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)
题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...
- ZOJ 2671 Cryptography 矩阵乘法+线段树
B - Cryptography Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Subm ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模
Multiply game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- codeforces750E New Year and Old Subsequence 矩阵dp + 线段树
题目传送门 思路: 先看一个大牛的题解 题解里面对矩阵的构造已经写的很清楚了,其实就是因为在每个字符串都有固定的很多中状态,刚好可以用矩阵来表达,所以$(i,j)$这种状态可以通过两个相邻的矩阵的$m ...
- HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解
题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...
- 2019杭电多校6 hdu6638 Snowy Smile(二维最大矩阵和 线段树)
http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你一些点的权值,让找一个矩形圈住一部分点,问圈住点的最大权值和 分析:由于是稀疏图,明显要先把x, ...
- E. Sasha and Array 矩阵快速幂 + 线段树
E. Sasha and Array 这个题目没有特别难,需要自己仔细想想,一开始我想了一个方法,不对,而且还很复杂,然后lj提示了我一下说矩阵乘,然后再仔细想想就知道怎么写了. 这个就是直接把矩阵放 ...
- 【vijos】1750 建房子(线段树套线段树+前缀和)
https://vijos.org/p/1750 是不是我想复杂了.... 自己yy了个二维线段树,然后愉快的敲打. 但是wa了两法.......sad 原因是在处理第二维的更新出现了个小问题,sad ...
随机推荐
- 探秘C语言数组:解锁高效数据管理与多维空间编程技巧"
欢迎大家来到贝蒂大讲堂 养成好习惯,先赞后看哦~ 所属专栏:C语言学习 贝蒂的主页:Betty's blog 引言 前面贝蒂给大家介绍了选择结构与循环结构,今天,贝蒂准备给大家介绍C语言中一个非常重要 ...
- MyBaits查询MySQL日期类型结果相差8个小时
问题描述 在Java项目中使用MyBatis作为ORM框架,但是查询出的MySQL日期类型字段值总是比数据库表里的值多8个小时. 具体说明: MySQL数据库表字段类型为timestamp,映射的Ja ...
- Docker实践之07-数据管理
目录 一.数据卷概述 二.创建数据卷 三.查看数据卷 四.挂载数据卷 五.删除数据卷 六.挂载主机目录或文件 七.挂载数据卷与主机目录/文件的比较 一.数据卷概述 数据卷是一个可供一个或多个容器使用的 ...
- 使用二进制重排 & Clang插桩技术点来进行iOS冷启动进行优化
1.冷启动 1.1 什么是冷启动? 冷启动是指内存中不包含该应用程序相关的数据,必须要从磁盘载入到内存中的启动过程. 注意:重新打开 APP, 不一定就是冷启动. 当内存不足,APP被系统自动杀死后, ...
- 启动Study.BlazorOne项目
由于Study.Trade模块的Blazor是基于国内著名的BootstrapBlazor组件,因此Study.BlazorOne项目也必须添加对BootstrapBlazor的支持. # 1.去Bo ...
- DataGear 制作基于Vue2、Element UI前端框架的数据可视化看板
DataGear 数据可视化看板内置了一些基本.简单的页面交互组件,当它们无法满足实际看板需求时,可以引入更流行和强大的前端框架. 本文以Vue2.Element UI前端框架为例,介绍如何制作具有更 ...
- 【Azure 应用服务】在App Service 中如何通过Managed Identity获取访问Azure资源的Token呢? 如Key Vault
问题描述 当App Service启用了Managed Identity后,Azure中的资源就可以使用此Identity访问. 如果需要显示的获取这个Token,如何实现呢? 问题解答 在App S ...
- Java 异常处理(1) : try-catch- finally中finally的使用
1 package com.bytezero.throwable; 2 3 import java.io.File; 4 import java.io.FileInputStream; 5 impor ...
- git 全局用户名改为英文,中文生成的git记录文件 不能有中文,现场反馈 git config user.name
设置用户名和邮箱 git config --global user.name "username" git config --global user.email useremail ...
- vscode 利用正则 搜索标签 tags (?=.*关键字1)(?=.*关键字2).*
vscode 利用正则 搜索标签 (?=.关键字1)(?=.关键字2).* 这里关键词是可以多个并且不按照顺序搜索的,就是写起来需要 (?=.关键字) 最后. 结尾 我是不是需要制作一个转换的小工具呢 ...