代码随想录算法训练营

代码随想录算法训练营Day52 动态规划| 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

300.最长递增子序列

题目链接:300.最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

总体思路

首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。

本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,那又是什么样的关系呢。

用动规五部曲来详细分析一波:

  1. dp[i]的定义

    本题中,正确定义dp数组的含义十分重要。

    dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

    为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。
  2. 状态转移方程

    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

    所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

    注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值
  3. dp[i]的初始化

    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
  4. 确定遍历顺序

    dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

    j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

    遍历i的循环在外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
  1. 举例推导dp数组

    输入:[0,1,0,3,2],dp数组的变化如下:



    如果代码写出来,但一直AC不了,那么就把dp数组打印出来,看看对不对!

    以上五部分析完毕,C++代码如下:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
return result;
}
};

674. 最长连续递增序列

题目链接:674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

总体思路

本题对[[#300.最长递增子序列]]最大的区别在于“连续”。

本题要求的是最长连续递增序列

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

    dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

    注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。
  2. 确定递推公式

    如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

    即:dp[i] = dp[i - 1] + 1;

    注意这里就体现出和[[#300.最长递增子序列]]的区别!

    因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

    既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。

    这里大家要好好体会一下!
  3. dp数组如何初始化

    以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

    所以dp[i]应该初始1;
  4. 确定遍历顺序

    从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

    本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) { // 连续记录
dp[i] = dp[i - 1] + 1;
}
}
  1. 举例推导dp数组



    注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int result = 1;
vector<int> dp(nums.size() ,1);
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) { // 连续记录
dp[i] = dp[i - 1] + 1;
}
if (dp[i] > result) result = dp[i];
}
return result;
}
};

718. 最长重复子数组

题目链接:718. 最长重复子数组

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

    提示:
  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

总体思路

注意题目中说的子数组,其实就是连续子序列。

要求两个数组中最长重复子数组,如果是暴力的解法 只需要先两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

本题其实是动规解决的经典题目,我们只要想到 用二维数组可以记录两个字符串的所有比较情况,这样就比较好推 递推公式了。 动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

    此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

    其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

    那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

    行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了。
  2. 确定递推公式

    根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

    即当A[i - 1] 和B[j - 1]相等的时候,`dp[i][j] = dp[i - 1][j - 1] + 1;

    根据递推公式可以看出,遍历i 和 j 要从1开始!
  3. dp数组如何初始化

    根据dp[i][j]的定义,dp[i][0]dp[0][j]其实都是没有意义的!

    dp[i][0] dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1; 所以dp[i][0]dp[0][j]初始化为0。 举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]`初始为0,正好符合递推公式逐步累加起来。
  4. 确定遍历顺序

    外层for循环遍历A,内层for循环遍历B。

    那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

    也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

    同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
  1. 举例推导dp数组

    拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

// 版本一
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};

代码随想录算法训练营Day52 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. 【微信网页授权】SpringBoot+uniapp实现网页授权获取用户基本信息

    前言 缘由 起因于本狗上一个项目本打算采用微信公众号网页授权登录做用户鉴权,但最终因公众号是未认证的订阅号,无权限获取用户信息,所以改变思路,采用登录注册方式实现用户区分.但在开发中,学习了微信网页授 ...

  2. Spring MVC 和 Struts 的区别是什么?

    1. 拦截机制的不同 Struts2 是类级别的拦截,每次请求就会创建一个 Action,和 Spring 整合时 Struts2 的 ActionBean 注入作用域是原型模式 prototype, ...

  3. Shell脚本监控Centos 7系统运行状态

    #!/usr/bin/bash ## @date: 2021-08-17 ## This is a script for security operation indicator monitoring ...

  4. InnoDB 索引深入剖析

    InnoDB页 将数据划分为若干个页(page),以页作为磁盘和内存之间交互的基本单位,InnoDB中页的大小一般为 16KB.也就是在一般情况下,一次最少从磁盘中读取16KB的内容到内存中,一次最少 ...

  5. 自己动手从零写桌面操作系统GrapeOS系列教程——22.文件系统与FAT16

    学习操作系统原理最好的方法是自己写一个简单的操作系统. 新买的硬盘和优盘在第一次使用时需要格式化,有时候还需要分区.这是为什么呢?分区和格式化到底是干啥呢?本讲将为大家解开这些疑惑. 一.文件系统 1 ...

  6. Go接入kafka

    需要借助的库 github.com/Shopify/sarama // kafka主要的库* github.com/bsm/sarama-cluster // kafka消费组 生产者 package ...

  7. 数仓如何进行表级控制analyze?

    摘要: 介绍如何设置采样大小和表级控制analyze. 本文分享自华为云社区<GaussDB(DWS) 如何表级控制analyze>,作者:leapdb. 一.控制采样大小 [设置全局采样 ...

  8. 投资组合计算分析——R语言

    "投资组合"是指金融资产(如股票.债券和现金)的任何组合.投资组合有很多类型,包括市场投资组合和零投资投资组合.可以使用以下任何一种投资方法和原则来管理投资组合的资产分配:股息加权 ...

  9. python进程之进程池、线程池与异步回调机制

    进程线程不可以无限制的创建,因为有硬件的限制.为了避免资源被程序消耗过度,可以使用进程池或线程池的技术. 池     降低程序的执行效率,但是保证了计算机硬件的安全 进程池     提前创建好固定数量 ...

  10. kubernetes(k8s) 存储动态挂载

    使用 nfs 文件系统 实现kubernetes存储动态挂载 1. 安装服务端和客户端 root@hello:~# apt install nfs-kernel-server nfs-common 其 ...