Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13176   Accepted: 4118

Description

Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the
figure below). 




We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 

1. Any normal grid should be covered with exactly one card. 

2. One card should cover exactly 2 normal adjacent grids. 



Some examples are given in the figures below: 

 

A VALID solution.


 

An invalid solution, because the hole of red color is covered with a card.


 

An invalid solution, because there exists a grid, which is not covered.


Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

Input

There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

Output

If the board can be covered, output "YES". Otherwise, output "NO".

Sample Input

4 3 2
2 1
3 3

Sample Output

YES

Hint

 

A possible solution for the sample input.

给你一个棋盘,棋盘上有几个洞。要求你用一些1*2的卡片覆盖没有洞的区域,一个格子仅仅能有一张卡片覆盖。

看能否恰好覆盖。





二分匹配:利用二分匹配。两个能匹配的格子的坐标和必定奇偶性不同。利用这一点能够降低时间耗费。

#include"stdio.h"
#include"string.h"
#include"queue"
using namespace std;
#define N 35
#define M 1200
int g[N][N],n,m;
int dir[4][2]={0,1,0,-1,-1,0,1,0};
int mark[M],link[M];
int judge(int x,int y)
{
if(x>=0&&x<n&&y>=0&&y<m)
return 1;
return 0;
}
int find(int k)
{
int i,j,x,y,di,dj;
x=k/m;
y=k%m;
for(i=0;i<4;i++)
{
di=dir[i][0]+x;
dj=dir[i][1]+y;
if(judge(di,dj)&&!g[di][dj])
{
j=di*m+dj;
if(!mark[j])
{
mark[j]=1;
if(link[j]==-1||find(link[j]))
{
link[j]=k;
return 1;
}
}
}
}
return 0;
}
int main()
{
int u,v,k,i,j;
while(scanf("%d%d%d",&n,&m,&k)!=-1)
{
memset(g,0,sizeof(g));
for(i=0;i<k;i++)
{
scanf("%d%d",&v,&u);
u--;v--;
g[u][v]=1;
}
if((n*m-k)&1)
{
printf("NO\n");
continue;
}
int ans=0;
memset(link,-1,sizeof(link));
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
if((i+j)%2==0||g[i][j]) //(i+j)奇偶性! !!
continue;
memset(mark,0,sizeof(mark));
ans+=find(i*m+j);
}
}
//printf("%d\n",ans);
if(ans*2==n*m-k)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

poj 2446 Chessboard (二分图利用奇偶性匹配)的更多相关文章

  1. POJ 2446 Chessboard (二分图匹配)

    题意 在一个N*M的矩形里,用1*2的骨牌去覆盖该矩形,每个骨牌只能覆盖相邻的两个格子,问是否能把每个格子都盖住.PS:有K个孔不用覆盖. 思路 容易发现,棋盘上坐标和为奇数的点只会和坐标和为偶数的点 ...

  2. POJ 2446 Chessboard (二分图最大匹配)

    题目链接:http://poj.org/problem?id=2446 给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次.问你除了洞口之外这个 ...

  3. poj 2446 Chessboard (二分匹配)

    Chessboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12800   Accepted: 4000 Descr ...

  4. POJ 2446 Chessboard【二分图最大匹配】

    <题目链接> 题目大意: 给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次.问你除了洞口之外这个棋盘是否能被纸片填满. 解题分析: ...

  5. POJ 2446 Chessboard(二分图最大匹配)

    题意: M*N的棋盘,规定其中有K个格子不能放任何东西.(即不能被覆盖) 每一张牌的形状都是1*2,问这个棋盘能否被牌完全覆盖(K个格子除外) 思路: M.N很小,把每一个可以覆盖的格子都离散成一个个 ...

  6. POJ 2446 Chessboard

    要求用占两格的长方形铺满平面上除去指定点 二分图匹配 #include <iostream> #include <cstdio> #include <cstring> ...

  7. poj 2195 二分图最优匹配 或 最小费用最大流

    就是最基本的二分图最优匹配,将每个人向每个房子建一条边,权值就是他们manhattan距离.然后对所有权值取反,求一次最大二分图最优匹配,在将结果取反就行了. #include<iostream ...

  8. [模板] 匈牙利算法&&二分图最小字典序匹配

    匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...

  9. UVa 11383 少林决胜(二分图最佳完美匹配)

    https://vjudge.net/problem/UVA-11383 题意: 给定一个N×N矩阵,每个格子里都有一个正整数W(i,j).你的任务是给每行确定一个整数row(i),每列也确定一个整数 ...

随机推荐

  1. CentOS、Ubuntu配置网卡子接口

    CentOS # ip addr add dev eth0 lable eth0: 以上为临时配置,重启失效.若需永久保存,增加网络配置文件 # vim /etc/sysconfig/network- ...

  2. 2000W条数据,加入全文检索的总结

    一) 前期准备测试: 旧版的MySQL的全文索引只能用在MyISAM表格的char.varchar和text的字段上. 不过新版的MySQL5.6.24上InnoDB引擎也加入了全文索引,所以具体信息 ...

  3. 最大流——Dinic算法

    前面花了很长时间弄明白了压入-重标记的各种方法,结果号称是O(V3)的算法测demo的时候居然TLE了一个点,看了题解发现所有人都是用Dinic算法写的,但它的复杂度O(V2E)明显高于前者,具体是怎 ...

  4. 使用.NET Core在RESTful API中进行路由操作

    介绍 当列出REST API的最佳实践时,Routing(路由)总是使它位于堆栈的顶部.今天,在这篇文章中,我们将使用特定于.NET Core的REST(web)API来处理路由概念. 对于新手API ...

  5. TCP:传输控制协议

    概述: 书中采用了8章来介绍TCP,可见其重要性.TCP是一种面向连接的.可靠的字节流服务,也就是说两方要交换数据必须先建立一个连接. TCP的信息单位称为segment.TCP对字节流的内容不作任何 ...

  6. 1.0-springboot的java配置方式

    1.创建User实体类. @Data public class User { private String username; private String password; private Int ...

  7. VMware下设置Centos7联网与固定IP连接Xshell

    爱折腾的小伙伴应该经常会用Vmware安装一些虚拟机用于学习,但是比如装了Linux,经常操作的时候非常切换窗口的时候非常麻烦,所以很多人都会选择用Xshell来连接本地的Linux虚拟机,但是用Xs ...

  8. Java第一季

    1.Java常量的应用 语法:final 常量名 = 值: final String LOVE = "IMOOC"; final double PI = 3.14 举一个简单的例子 ...

  9. POJ2251-Dungeon Master

    题意:给出一三维空间的地牢,要求求出由字符'S'到字符'E'的最短路径移动方向可以是上,下,左,右,前,后,六个方向,每移动一次就耗费一分钟,要求输出最快的走出时间.不同L层的地图,相同RC坐标处是连 ...

  10. 解决tomcat部署包错误

    Context namespace element 'annotation-config' and its parser class [org.springframework.context.anno ...