欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8186    Accepted Submission(s): 2926

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正
整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结 束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0

简单的欧拉回路判断,欧拉回路入门:

 #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <vector>
#include <stack>
using namespace std;
#define ll long long int
int a[];
int find(int x)
{
if(a[x]!=x)
a[x]=find(a[x]);
return a[x];
}
int main()
{
int n,m;
while(cin>>n,n)
{
cin>>m;
int i,x,y;
int b[n+];
a[]=;
for(i=;i<=n;i++)
a[i]=i;
memset(b,,sizeof(b));
for(i=;i<m;i++)
{
scanf("%d%d",&x,&y);
b[x]++;
b[y]++;
if(y<x)
swap(x,y);
int fx=find(x);
int fy=find(y);
if(fy!=fx)
a[fy]=fx;
}
int sum=;
for(i=;i<=n;i++)
{
if(b[i]%==&&a[i]==)
sum++;
}
if(sum==n)
cout<<<<endl;
else cout<<<<endl;
} }

hdu1878判断欧拉回路的更多相关文章

  1. hdu-1878(欧拉回路)

    题目链接:传送门 思路:就是判断无向图的欧拉回路的两个条件:(1)连通性(2)点的度数是偶数 注意:两个条件一同时满足才行. #include<iostream> #include< ...

  2. hdu 1116 并查集判断欧拉回路通路

    判断一些字符串能首尾相连连在一起 并查集求欧拉回路和通路 Sample Input 3 2 acm ibm 3 acm malform mouse 2 ok ok Sample Output The ...

  3. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  4. POJ 1386 判断欧拉回路

    题意:要开启一扇门,n个单词是密码,n个单词中,如果一个单词的首字母和前一个单词的尾字母相同,并且每个单词都能这么连起来且只用一次,则门可以开启,否则不能开启,现给出单词,判断门是否可以开. 有向图欧 ...

  5. HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  7. 欧拉回路&欧拉通路判断

    欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...

  8. hdu--1878--欧拉回路(并查集判断连通,欧拉回路模板题)

     题目链接 /* 模板题-------判断欧拉回路 欧拉路径,无向图 1判断是否为连通图, 2判断奇点的个数为0 */ #include <iostream> #include <c ...

  9. hdu1116 欧拉回路

    //Accepted 248 KB 125 ms //欧拉回路 //以26个字母为定点,一个单词为从首字母到末尾字母的一条边 //下面就是有向图判断欧拉回路 //连通+节点入度和==出度和 或者 存在 ...

随机推荐

  1. [2014-12-30]如何动态构造Lambda表达式(动态构造Lambda查询条件表达式)

    声明 本文对Lambda表达式的扩展,示例代码来源于网络. 场景描述 web开发查询功能的时候,如果查询条件比较多,就会遇到动态组合查询条件的情况.在手写sql的情况下,我们一般会根据传入的参数,针对 ...

  2. Android的47个小知识

    1.判断sd卡是否存在  boolean sdCardExist = Environment.getExternalStorageState().equals(android.os.Environme ...

  3. 新的表格展示利器 Bootstrap Table Ⅱ

        上一篇文章介绍了Bootstrap Table的基本知识点和应用,本文针对上一篇文章中未解决的文件导出问题进行分析,同时介绍BootStrap Table的扩展功能,当行表格数据修改. 1.B ...

  4. 【转载】js常用方法和片段

    在网上看了不少js方法的总结没,自己也尝试总结过,这篇只迄今为止觉得最清楚的,尤其是call和apply的方法总结,很到位!! 1.javascript删除元素节点 IE中有这样一个方法:remove ...

  5. nginx.conf配置文件的简单说明

    #nginx 监听原理 先监听端口 --> 再配置域名 -->匹配到就访问local 否则 没有匹配到域名就默认访问第一个监听端口的local地址# vi nginx.conf user ...

  6. mysql 批量插入优化之rewriteBatchedStatements

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt397 介绍MySQL Jdbc驱动的rewriteBatchedStatem ...

  7. java四则运算

    题目描述: 从<构建之法>第一章的 "程序" 例子出发,像阿超那样,花二十分钟写一个能自动生成小学四则运算题目的命令行 "软件",满足以下需求: 除 ...

  8. 201521123082 《Java程序设计》第14周学习总结

    201521123082 <Java程序设计>第14周学习总结 标签(空格分隔):java 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. Answ ...

  9. 201521123109《java程序设计》第八周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 1.2 选做:收集你认为有用的代码片段 2. 书面作业 本次作业题集集合 List中指定元素的删除(题目4-1 ...

  10. 201521123109《java程序设计》第三周学习总结

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 2. 书面作 ...