快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana)

概要说明

需求场景,系统环境是CentOS,多个应用部署在多台服务器上,平时查看应用日志及排查问题十分不变。索性搭建一个服务器日志收集系统,由于每日日志规模仅在G级别,所有前期暂先不搭建集群。
技术方案是 Filebeat + ElasticSearch + kibana (日志服务器上安装ElasticSearch,Kibana,其他应用服务器上安装Filebeat); 没有考虑加上Logstash,Flume,Kafka,Redis等,一是Filebeat比较轻量级,占用资源少,且可直接将日志输出到elasticsearch,仅是方便查看线上服务日志;不需要对日志字段进行解析,所以不打算引入技术太多,增加复杂性;没用Redis,原因仅是当前已有Redis集群,但主要是交易系统使用,不想增加其额外风险。
另外,当前的选用的日志服务器内存等配置不高。不适合安装过多软件,仅此而已。 也可参考我之前写的另一篇博客:
Windows下ELK-5.4.3环境搭建 http://www.cnblogs.com/huligong1234/p/7108109.html

一、安装ElasticSearch

1.安装JDK8环境

[root@app-001 src]# cd /usr/local/src/
[root@app-001 src]# rpm -qa | grep jdk
java-1.6.0-openjdk-1.6.0.41-1.13.13.1.el6_8.x86_64
[root@app-001 src]# rpm -e java-1.6.0-openjdk-1.6.0.41-1.13.13.1.el6_8.x86_64
[root@app-001 src]# curl -L -O http://download.oracle.com/otn-pub/java/jdk/8u144-b01/090f390dda5b47b9b721c7dfaa008135/jdk-8u144-linux-x64.rpm?AuthParam=1506173332_32b98eb52c8955419974ec3efcba2209
[root@app-001 src]# rpm -ivh jdk-8u144-linux-x64.rpm
[root@app-001 src]# java -version

2.安装ElasticSearch

[root@app-001 src]# curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.6.1.rpm
[root@app-001 src]# rpm -ivh elasticsearch-5.6.1.rpm
[root@app-001 src]# chkconfig --add elasticsearch 安装支持中文分词插件
[root@app-001 src]# /usr/share/elasticsearch/bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v5.6.1/elasticsearch-analysis-ik-5.6.1.zip

3.配置ElasticSearch

[root@app-001 src]# vi /etc/elasticsearch/elasticsearch.yml
# ======================== Elasticsearch Configuration =========================
#
# NOTE: Elasticsearch comes with reasonable defaults for most settings.
# Before you set out to tweak and tune the configuration, make sure you
# understand what are you trying to accomplish and the consequences.
#
# The primary way of configuring a node is via this file. This template lists
# the most important settings you may want to configure for a production cluster.
#
# Please consult the documentation for further information on configuration options:
# https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
# ---------------------------------- Cluster -----------------------------------
#
# Use a descriptive name for your cluster:
#
#cluster.name: my-application
#
# ------------------------------------ Node ------------------------------------
#
# Use a descriptive name for the node:
#
node.name: node-1
#
# Add custom attributes to the node:
#
#node.attr.rack: r1
#
# ----------------------------------- Paths ------------------------------------
#
# Path to directory where to store the data (separate multiple locations by comma):
#
#path.data: /data/elasticsearch/data
#
# Path to log files:
#
#path.logs: /data/elasticsearch/logs
#
# ----------------------------------- Memory -----------------------------------
#
# Lock the memory on startup:
#
bootstrap.memory_lock: true #
# Make sure that the heap size is set to about half the memory available
# on the system and that the owner of the process is allowed to use this
# limit.
#
# Elasticsearch performs poorly when the system is swapping the memory.
#
# ---------------------------------- Network -----------------------------------
#
# Set the bind address to a specific IP (IPv4 or IPv6):
#
network.host: 192.168.1.106
#
# Set a custom port for HTTP:
#
http.port: 9200
#
# For more information, consult the network module documentation.
#
# --------------------------------- Discovery ----------------------------------
#
# Pass an initial list of hosts to perform discovery when new node is started:
# The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.zen.ping.unicast.hosts: ["host1", "host2"]
#
# Prevent the "split brain" by configuring the majority of nodes (total number of master-eligible nodes / 2 + 1):
#
#discovery.zen.minimum_master_nodes: 3
#
# For more information, consult the zen discovery module documentation.
#
# ---------------------------------- Gateway -----------------------------------
#
# Block initial recovery after a full cluster restart until N nodes are started:
#
#gateway.recover_after_nodes: 3
#
# For more information, consult the gateway module documentation.
#
# ---------------------------------- Various -----------------------------------
#
# Require explicit names when deleting indices:
#
#action.destructive_requires_name: true
http.cors.enabled: true
http.cors.allow-origin: "*"
#http.cors.allow-origin: "esmgr.domain.com"

注意:如果CentOS版本低于7.0还需要进行如下配置调整

bootstrap.memory_lock: false
bootstrap.system_call_filter: false

如果非内网访问,network.host需改成如下配置:

network.host: 0.0.0.0

4.启动ElasticSearch

[root@app-001 src]# service elasticsearch start
[root@app-001 src]# curl "http://192.168.1.234:9200" #查看启动情况

5.防火墙放开iptables 9200端口,允许内网其他机器访问

[root@app-001 src]# vi /etc/sysconfig/iptables
增加如下内容:
-A INPUT -s 192.168.1.0/24 -p tcp -m state --state NEW -m tcp --dport 9200 -j ACCEPT [root@app-001 src]# service iptables restart

二、安装Filebeat

1.下载

[root@app-001 src]# curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-5.6.1-x86_64.rpm

2.安装

[root@app-001 src]# rpm -ivh filebeat-5.6.1-x86_64.rpm
[root@app-001 src]# chkconfig --add filebeat

3.配置

[root@app-001 src]# vi /etc/filebeat/filebeat.yml
###################### Filebeat Configuration Example #########################

# This file is an example configuration file highlighting only the most common
# options. The filebeat.full.yml file from the same directory contains all the
# supported options with more comments. You can use it as a reference.
#
# You can find the full configuration reference here:
# https://www.elastic.co/guide/en/beats/filebeat/index.html #=========================== Filebeat prospectors ============================= filebeat.prospectors: # Each - is a prospector. Most options can be set at the prospector level, so
# you can use different prospectors for various configurations.
# Below are the prospector specific configurations. - input_type: log # Paths that should be crawled and fetched. Glob based paths.
paths:
#- /var/log/*.log
- /opt/tomcat-myapp/logs/myapp.log
- /data/production/tomcat-myapp/logs/catalina.out
#- c:\programdata\elasticsearch\logs\*
fields_under_root: true
fields:
log_type: myapp
tags: ["myapp","tomcat-log"]
# Exclude lines. A list of regular expressions to match. It drops the lines that are
# matching any regular expression from the list.
exclude_lines: ["^DBG"] # Include lines. A list of regular expressions to match. It exports the lines that are
# matching any regular expression from the list.
#include_lines: ["^ERR", "^WARN"] # Exclude files. A list of regular expressions to match. Filebeat drops the files that
# are matching any regular expression from the list. By default, no files are dropped.
#exclude_files: [".gz$"] # Optional additional fields. These field can be freely picked
# to add additional information to the crawled log files for filtering
#fields:
# level: debug
# review: 1 ### Multiline options # Mutiline can be used for log messages spanning multiple lines. This is common
# for Java Stack Traces or C-Line Continuation # The regexp Pattern that has to be matched. The example pattern matches all lines starting with [
multiline.pattern: ^\[ # Defines if the pattern set under pattern should be negated or not. Default is false.
#multiline.negate: false # Match can be set to "after" or "before". It is used to define if lines should be append to a pattern
# that was (not) matched before or after or as long as a pattern is not matched based on negate.
# Note: After is the equivalent to previous and before is the equivalent to to next in Logstash
multiline.match: after
encoding: utf-8 - input_type: log
paths:
- /opt/tomcat-apiserver/logs/apiserver.log
- /data/production/tomcat-apiserver/logs/catalina.out
fields_under_root: true
fields:
log_type: apiserver
tags: ["tomcat-log"]
encoding: utf-8
exclude_lines: ["^DBG"]
multiline.pattern: ^\[
multiline.match: after - input_type: log
paths:
- /usr/local/tengine/logs/error.log
fields_under_root: true
fields:
log_type: nginx-error
tags: ["nginx-log"]
encoding: utf-8 - input_type: log
paths:
- /var/log/*.log
fields_under_root: true
fields:
log_type: system
tags: ["system-log"]
encoding: utf-8
#================================ General ===================================== # The name of the shipper that publishes the network data. It can be used to group
# all the transactions sent by a single shipper in the web interface.
#name: # The tags of the shipper are included in their own field with each
# transaction published.
#tags: ["service-X", "web-tier"]
# Optional fields that you can specify to add additional information to the
# output.
fields:
log_host: ip-106
# env: staging #================================ Outputs ===================================== # Configure what outputs to use when sending the data collected by the beat.
# Multiple outputs may be used. #-------------------------- Elasticsearch output ------------------------------
output.elasticsearch:
# Array of hosts to connect to.
hosts: ["192.168.1.106:9200"] # Optional protocol and basic auth credentials.
#protocol: "https"
#username: "elastic"
#password: "changeme" #----------------------------- Logstash output --------------------------------
#output.logstash:
# The Logstash hosts
#hosts: ["localhost:5044"] # Optional SSL. By default is off.
# List of root certificates for HTTPS server verifications
#ssl.certificate_authorities: ["/etc/pki/root/ca.pem"] # Certificate for SSL client authentication
#ssl.certificate: "/etc/pki/client/cert.pem" # Client Certificate Key
#ssl.key: "/etc/pki/client/cert.key" #================================ Logging ===================================== # Sets log level. The default log level is info.
# Available log levels are: critical, error, warning, info, debug
#logging.level: debug # At debug level, you can selectively enable logging only for some components.
# To enable all selectors use ["*"]. Examples of other selectors are "beat",
# "publish", "service".
#logging.selectors: ["*"]

4.启动

[root@app-001 src]# /usr/bin/filebeat.sh -configtest
[root@app-001 src]# service filebeat start [root@app-001 src]# service filebeat status #检查状态 [root@app-001 src]# tail -f /var/log/filebeat/filebeat

三、安装kibana

1.下载

[root@app-001 src]# curl -L -O https://artifacts.elastic.co/downloads/kibana/kibana-5.6.1-x86_64.rpm

2.安装

[root@app-001 src]# rpm -ivh kibana-5.6.1-x86_64.rpm
[root@app-001 src]# chkconfig --add kibana

3.配置

[root@app-001 src]# vi /etc/kibana/kibana.yml
server.port: 5601
server.host: "192.168.1.106"
elasticsearch.url: "http://192.168.1.106:9200"

4.启动

[root@app-001 src]# service kibana start

浏览器访问 http://192.168.1.106:5601/

四、安装插件

1.elasticsearch-head

1.1.安装NodeJS环境
[root@app-001 src]# curl --silent --location https://rpm.nodesource.com/setup_8.x | bash -
[root@app-001 src]# yum install -y nodejs
[root@app-001 src]# node -v
[root@app-001 src]# npm -v
1.2.下载 elasticsearch-head
[root@app-001 src]# wget https://codeload.github.com/mobz/elasticsearch-head/zip/master
[root@app-001 src]# unzip master
1.3.修改配置
1.3.1.修改elasticsearch.yml,增加跨域的配置(需要重启es才能生效)
http.cors.enabled: true
http.cors.allow-origin: "*" 1.3.2.编辑elasticsearch-head/Gruntfile.js,修改服务器监听地址,connect节点增加hostname属性,将其值设置为* connect: {
server: {
options: {
hostname:'*',
port: 9100,
base: '.',
keepalive: true
}
}
} 1.3.3.编辑elasticsearch-head/_site/app.js,
修改默认es地址http://localhost:9200/为http://192.168.1.106:9200/。
1.4.启动
[root@app-001 src]# npm run start
浏览器访问 http://192.168.1.106:9100/

2.bigdesk

http://bigdesk.org/

五、使用Basic Auth给ElasticSearch和Kibana配置访问权限

1.创建密码

[root@app-001 src]# htpasswd -c /usr/local/tengine/db/passwd.db loguser

2.修改Nginx配置文件nginx.conf

[root@app-001 src]# vi /usr/local/tengine/conf/nginx.conf

		server {
listen 80;
server_name esmgr.domain.com;
auth_basic "basic auth esmgr";
auth_basic_user_file /usr/local/nginx/db/passwd.db;
location / {
proxy_pass http://192.168.1.106:9200;
}
location /head/ {
proxy_pass http://192.168.1.106:9100/;
}
}

3.更新Nginx生效

[root@app-001 src]# /usr/local/tengine/sbin/nginx -t
nginx: the configuration file /usr/local/tengine/conf/nginx.conf syntax is ok
nginx: configuration file /usr/local/tengine/conf/nginx.conf test is successful
[root@app-001 src]# /usr/local/tengine/sbin/nginx -s reload

六、CURL查询方式示例

curl -XGET "http://192.168.1.106:9200/_search" -H 'Content-Type: application/json' -d'
{
"query": {
"match": {"message": "JD_08011137015349778"}
}
}' curl -XGET "http://192.168.1.106:9200/_search" -H 'Content-Type: application/json' -d'
{
"query": { "match": {"log_type": "myapp"}
},"size": 5
}' curl -XGET "http://192.168.1.106:9200/_search" -H 'Content-Type: application/json' -d'
{"query":{"bool":{"must":[{"match":{"message":"JD_08011137015349778"}}],"filter":[{"range":{"@timestamp":{"from":"now-1d","to":"now"}}}]}}}
' curl -XGET "http://192.168.1.106:9200/_search" -H 'Content-Type: application/json' -d'
{"query":{"bool":{"must":[{"match":{"message":"JD_08011137015349778"}}],"filter":[{"range":{"@timestamp":{"gte":"1506441600000","lte":"1506527999000"}}}]}}}
'

七、Java HttpClient 方式调用简单封装示例

package org.jeedevframework.common.es;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date; import javax.servlet.http.HttpServletRequest; import org.apache.commons.lang3.StringUtils;
import org.apache.http.HttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpConnectionParams;
import org.apache.http.util.EntityUtils;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject; import org.jeedevframework.util.DateUtil;
/**
针对如下CURL请求方式的Java封装示例
curl -XGET "http://192.168.1.106:9200/_search" -H 'Content-Type: application/json' -d'
{"query":{"bool":{"must":[{"match":{"message":"JD_08011137015349778"}}],
"filter":[{"range":{"@timestamp":{"gte":"1506441600000","lte":"1506527999000"}}}]}}}
'
* */
public class EsQueryService { public static DefaultHttpClient httpClient = null;
public static DefaultHttpClient getHttpClientInstance() {
if (null == httpClient) {
BasicHttpParams httpParams = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(httpParams, 120000);
HttpConnectionParams.setSoTimeout(httpParams, 120000);
DefaultHttpClient httpClient = new DefaultHttpClient(httpParams);
httpClient.getParams().setParameter("http.protocol.content-charset", "UTF-8"); return httpClient;
}
return httpClient;
} public static String query(HttpServletRequest request) throws JSONException, ParseException {
String keywords = request.getParameter("keywords");
String startTime = request.getParameter("startTime");
String endTime = request.getParameter("endTime");
int pageSize = Integer.valueOf(StringUtils.defaultIfEmpty(request.getParameter("pageSize"), "10"));
String log_type = StringUtils.defaultIfEmpty(request.getParameter("log_type"), ""); if(StringUtils.isEmpty(startTime)){
startTime = DateUtil.format(new Date(),DateUtil.C_DATE_PATTON_DEFAULT)+" 00:00:00";
}
if(StringUtils.isEmpty(endTime)){
endTime = DateUtil.format(new Date(),DateUtil.C_DATE_PATTON_DEFAULT)+" 23:59:59";
} long startTimeDt = new SimpleDateFormat(DateUtil.C_TIME_PATTON_DEFAULT).parse(startTime).getTime();
long endTimeDt = new SimpleDateFormat(DateUtil.C_TIME_PATTON_DEFAULT).parse(endTime).getTime(); DefaultHttpClient httpClient = getHttpClientInstance(); HttpPost httpPost = new HttpPost("http://192.168.1.106:9200/_search"); JSONObject esQueryJo = new JSONObject();
JSONObject queryJo = new JSONObject();
JSONObject boolJo = new JSONObject(); //esQueryJo.put("min_score", 1.2); JSONArray mustJoArr = new JSONArray();
if(StringUtils.isNotEmpty(keywords)){
JSONObject matchJo = new JSONObject();
matchJo.put("message", keywords);
JSONObject matchWrapJo = new JSONObject();
matchWrapJo.put("match", matchJo);
mustJoArr.put(matchWrapJo);
} if(StringUtils.isNotEmpty(log_type)){
JSONObject matchJo = new JSONObject();
matchJo.put("log_type", log_type);
JSONObject matchWrapJo = new JSONObject();
matchWrapJo.put("match", matchJo);
mustJoArr.put(matchWrapJo);
} JSONArray filterJoArr = new JSONArray();
JSONObject rangeJo = new JSONObject();
JSONObject timestampJo = new JSONObject();
timestampJo.put("gte", startTimeDt);
timestampJo.put("lte", endTimeDt);
//timestampJo.put("from", "now-1d");
//timestampJo.put("to", "now");
rangeJo.put("@timestamp", timestampJo);
//mustJoArr.put("match", matchJo);
JSONObject rangeWrapJo = new JSONObject();
rangeWrapJo.put("range", rangeJo);
filterJoArr.put(rangeWrapJo); boolJo.put("must",mustJoArr);
boolJo.put("filter",filterJoArr); queryJo.put("bool", boolJo);
esQueryJo.put("query", queryJo);
esQueryJo.put("size", pageSize);
String esQueryString = esQueryJo.toString();
String resultContent = "";
if(mustJoArr.length()>0){
StringEntity reqEntity = new StringEntity(esQueryString ,ContentType.APPLICATION_JSON);
httpPost.setEntity(reqEntity);
try{
HttpResponse resp = httpClient.execute(httpPost);
resultContent = EntityUtils.toString(resp.getEntity(), "UTF-8");
return resultContent;
}catch(Exception e){
e.printStackTrace();
}finally {
}
} return "";
} }

八、相关参考资料


ELK 性能(1) — Logstash 性能及其替代方案
http://www.cnblogs.com/richaaaard/p/6109595.html CentOS下RPM安装ElasticSearch
http://www.netpc.com.cn/2361.html Elasticsearch在Centos 7上的安装与配置
https://www.biaodianfu.com/centos-7-install-elasticsearch.html ElasticSearch 5.0.0 安装部署常见错误或问题
http://www.dajiangtai.com/community/18136.do?origin=csdn-geek&dt=1214 elasticsearch5.0启动出现的错误
http://blog.csdn.net/qq942477618/article/details/53414983 ElasticSearch 常用的查询过滤语句
http://www.cnblogs.com/ghj1976/p/5293250.html filebeat专题
http://www.cnblogs.com/louis2008/p/filebeat.html filebeat.yml(中文配置详解)
http://www.cnblogs.com/zlslch/p/6622079.html 28.Filebeat的高级配置-Filebeat部分
http://blog.csdn.net/a464057216/article/details/51233375 ELK+Filebeat+Nginx集中式日志解决方案(一)
http://zhengmingjing.blog.51cto.com/1587142/1907456 ELK日志服务使用-filebeat多文件发送
http://bbotte.com/logs-service/use-elk-processing-logs-multiple-log-file-send/ 初探ELK-以收集 nginx 日志为例示范搭建一个 ELK 环境的基本步骤
http://nosmoking.blog.51cto.com/3263888/1855680 filebeat+kafka+ELK5.4安装与部署
http://xiangcun168.blog.51cto.com/4788340/1933509 Filebeat5+Kafka+ELK Docker搭建日志系统
http://www.jianshu.com/p/9dfac37885cb 通过HTTP RESTful API 操作elasticsearch搜索数据
http://blog.csdn.net/stark_summer/article/details/48830493 Elasticsearch+Logstash+Kibana教程
http://www.cnblogs.com/xing901022/p/4704319.html

快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana)的更多相关文章

  1. 用ElasticSearch,LogStash,Kibana搭建实时日志收集系统

    用ElasticSearch,LogStash,Kibana搭建实时日志收集系统 介绍 这套系统,logstash负责收集处理日志文件内容存储到elasticsearch搜索引擎数据库中.kibana ...

  2. Kubernetes 系列(八):搭建EFK日志收集系统

    Kubernetes 中比较流行的日志收集解决方案是 Elasticsearch.Fluentd 和 Kibana(EFK)技术栈,也是官方现在比较推荐的一种方案. Elasticsearch 是一个 ...

  3. Docker搭建EFK日志收集系统,并自定义es索引名

    EFK架构图 一.EFK简介 EFK不是一个软件,而是一套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用,是目前主流的一种日志系统. EFK是三个开源软件的缩写,分 ...

  4. 快速搭建ELK日志分析系统

    一.ELK搭建篇 官网地址:https://www.elastic.co/cn/ 官网权威指南:https://www.elastic.co/guide/cn/elasticsearch/guide/ ...

  5. 十九,基于helm搭建EFK日志收集系统

    目录 EFK日志系统 一,EFK日志系统简介: 二,EFK系统部署 1,EFK系统部署方式 2,基于Helm方式部署EFK EFK日志系统 一,EFK日志系统简介: 关于系统日志收集处理方案,其实有很 ...

  6. Linux 搭建ELK日志收集系统

    在搭建ELK之前,首先要安装Redis和JDK,安装Redis请参考上一篇文章. 首先安装JDK及配置环境变量 1.解压安装包到/usr/local/java目录下[root@VM_0_9_cento ...

  7. 日志收集系统ELK搭建

    一.ELK简介 在传统项目中,如果在生产环境中,有多台不同的服务器集群,如果生产环境需要通过日志定位项目的Bug的话,需要在每台节点上使用传统的命令方式查询,这样效率非常低下.因此我们需要集中化的管理 ...

  8. 搭建日志收集系统时使用客户端连接etcd遇到的问题

    问题: 在做日志收集系统时使用到etcd,其中server端在linux上,首先安装第三方包(windows)(安装过程可能会有问题,我遇到的是连接谷歌官网请求超时,如果已经出现下面的两个文件夹并且文 ...

  9. centos7搭建EFK日志分析系统

    前言 EFK可能都不熟悉,实际上EFK是大名鼎鼎的日志系统ELK的一个变种 在没有分布式日志的时候,每次出问题了需要查询日志的时候,需要登录到Linux服务器,使用命令cat -n xxxx|grep ...

随机推荐

  1. 搭建DNS服务

    author:JevonWei 版权声明:原创作品 修改/var/named/下的数据库文件的数据时,需手动修改serial序列号 UDP协议53端口用于用户DNS查询,TCP协议53端口用于主从DN ...

  2. JS源生代码“增删改查”之增

    51呢最近在做一个管理数据的,第一次接触到用JS的源代码去实现一些功能,才知道网页里的许多功能都是依赖于“增删改查”完成的,下面的几张图片就是对于增的演示: 下面是有关HTML的代码:这个主要是弹窗部 ...

  3. 总结各种排序算法【Java实现】

    一.插入类排序 1.直接插入排序 思想:将第i个插入到前i-1个中的适当位置 时间复杂度:T(n) = O(n²). 空间复杂度:S(n) = O(1). 稳定性:稳定排序. 如果碰见一个和插入元素相 ...

  4. 实时监听文本框输入 oninput、onchange与onpropertychange事件的用法和区别

    前端页面开发的很多情况下都需要实时监听文本框输入,比如腾讯微博编写140字的微博时输入框hu9i动态显示还可以输入的字数.过去一般都使用onchange/onkeyup/onkeypress/onke ...

  5. 查看numpy.ndarray的数据类型

    使用ndarray数据时,如果希望知道数据的类型和维数,可以按照以下方法: Xxx.dtype  #xxx表示一个ndarray类型的变量,返回ndarray的数据类型 Xxx.shape  #xxx ...

  6. jQuery插件——ajax

    一.ajax请求 1.load(url, [data], [callback]) 概述:加载远程的HTML文件代码,并插入到指定的DOM节点中. 参数:url:待装入 HTML 网页网址. data: ...

  7. iOS ipa包瘦身------删除无用图片资源

         随着客户端业务的增多和业务的更新,App包大小越来越大,优化包大小是迫在眉睫,客户端需要优化的地方也有很多,本期主要讲如何查找无用图片并且删除无用图片的方法.      方案1:(暴力方法) ...

  8. 【2017集美大学1412软工实践_助教博客】团队作业5——测试与发布(Alpha版本)

    第五次团队作业成绩公布 题目 团队作业5: http://www.cnblogs.com/happyzm/p/6788792.html 团队成绩 成绩公示如下: 检查项 测试报告 Alpha版本发布说 ...

  9. 团队作业8——第二次项目冲刺(Beta阶段)--5.19 first day

    团队作业8--第二次项目冲刺(Beta阶段)--5.19 Day one: 会议照片 项目进展 由于今天是Beta版本项目冲刺的第一天,所以没有昨天已完成任务.以下是今日具体的任务安排. 队员 今日计 ...

  10. 团队作业8——第二次项目冲刺(Beta阶段)5.21

    1.当天站立式会议照片 会议内容: 本次会议为第三次会议 本次会议在陆大楼2楼召开,本次会议内容: ①:检查总结第二次任务完成情况 ②:布置第三次任务的详细分工 ③:规定完成时间是在第四次任务之前 ④ ...