hdu_1025(LIS Nlog(N)算法)
题意:自己慢慢读吧。大概就是道路两边建路,给出建路需求,要求两条路不能有交叉,问最多可以建多少条路。
题解:一看数据范围500000,应该是dp,再画个图模拟一下,发现实质就是求最长上升子序列,很自然的数据要求nlogn算法
算法讲解在之前写过,这里直接贴过来:点我哦
坑:输出两个坑,一个是road和roads的区别,还有一个是案例之间有空行
code:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
int q[N];
int stk[N];
int BSearch(int l,int r, int c)
{
while(l<=r){//注意这里应该是定于的时候还要再判断一次。
int m = (l+r)>>;
if(stk[m]==c) {
//printf("id = %d\n",m);
return m;
}
else if(stk[m]<c) l = m+;
else if(stk[m]>c) r = m-;
}
//printf("id = %d\n",l);
return l;
}
int main()
{
int n;
int c = ;
while(~scanf("%d",&n))
{
int cnt = ;
int t1,t2;
memset(stk,-,sizeof(stk));
for(int i = ; i < n; i++){
scanf("%d%d",&t1,&t2);
q[t1] = t2;
}
for(int i = ; i <= n; i++){
if(q[i]>stk[cnt-]){
stk[cnt++] = q[i];
}
else {
int id = BSearch(,cnt-,q[i]);
stk[id] = q[i];
}
}
cnt--;
if(cnt!=)
printf("Case %d:\nMy king, at most %d roads can be built.\n\n",c++,cnt);
else
printf("Case %d:\nMy king, at most %d road can be built.\n\n",c++,cnt);
}
return ;
}
hdu_1025(LIS Nlog(N)算法)的更多相关文章
- O(nlogn)LIS及LCS算法
morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len. ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- LIS的优化算法O(n log n)
LIS的nlogn的优化:LIS的优化说白了其实是贪心算法,比如说让你求一个最长上升子序列把,一起走一遍. 比如说(4, 2, 3, 1, 2,3,5)这个序列,求他的最长上升子序列,那么来看,如果求 ...
- 最长上升子序列(LIS)n2 nlogn算法解析
题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那 ...
- hdu 1950 最长上升子序列(lis) nlogn算法【dp】
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...
- Codeforces 486E LIS of Sequence --树状数组求LIS
题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i] ...
- 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...
- LIS
五:LIS 概念 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列.比如一个序列31 2 6 3 8,他的最长 ...
- 动态规划:最长上升子序列(LIS)
转载请注明原文地址:http://www.cnblogs.com/GodA/p/5180560.html 学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest incre ...
随机推荐
- 一些常用的vim编辑器快捷键:
一些常用的vim编辑器快捷键: h」.「j」.「k」.「l」,分别控制光标左.下.上.右移一格. 按「ctrl」+「b」:屏幕往“后”移动一页. 按「ctrl」+「f」:屏幕往“前”移动一页. 按「c ...
- xamarin android menu的用法
在Android中的菜单有如下几种: OptionMenu:选项菜单,android中最常见的菜单,通过Menu键来调用 SubMenu:子菜单,android中点击子菜单将弹出一个显示子菜单项的悬浮 ...
- HDU4992 求所有原根
Primitive Roots Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- lesson - 4 Linux目录文件管理
内容概要:1. 和目录相关的几个命令mkdir 关注-p选项 rmdir 同样也有一个-p选项rm -r -f 两个常用选项cp -r 针对目录, 有时我们使用/bin/cpmv 重命名或者移动, 有 ...
- asp.net core 2.0+sqlsugar搭建个人网站系列(0)
一些废话 马上就要过年了,回顾这一年最大的收获就是技术有了很大的提升,其他的方面没有什么改变,现在还是单身小屌丝一枚. 这一年来学习的主要重点就是asp.net core,中间也使用 core+EF做 ...
- 由linux命令谈学习操作系统的重要性
linux命令妙趣横生,喜欢敲命令行的人会深有体会,但是没有系统学习过操作系统的话,很多命令还是难以理解的.讲实在话,大多数linux爱好者常敲的都是这些方面的: 文件系统 磁盘 网络 系统状态 账户 ...
- centos7 部署dns服务器
=============================================== 2017/12/6_第2次修改 ccb_warlock 20 ...
- MySQL数据库学习: 01 —— 数据库的概述
壹 概述 一 了解SQL 1.1 数据库基础 1.1.1 什么是数据库 数据库(database)保存有组织的数据的容器(通常是一个文件或一组文件). 易混淆:人们常常用“数据库”这个词语来代表他们使 ...
- NOI 2005维护数列
题目描述 请写一个程序,要求维护一个数列,支持以下 6 种操作:(请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格) 输入输出格式 输入格式: 输入文件的第 1 行包含两个数 N 和 M, ...
- linux保持管道中颜色显示
在linux工作中,不同类型的文件以不同的颜色显示,如文件夹显示蓝色,压缩文件显示橘黄色,可执行文件显示为绿色,链接失效文件高亮显示等等: 有时候根据颜色可以快速鉴别,如我有时为了保持目录的完整性,会 ...