题意:自己慢慢读吧。大概就是道路两边建路,给出建路需求,要求两条路不能有交叉,问最多可以建多少条路。

题解:一看数据范围500000,应该是dp,再画个图模拟一下,发现实质就是求最长上升子序列,很自然的数据要求nlogn算法

算法讲解在之前写过,这里直接贴过来:点我哦

坑:输出两个坑,一个是road和roads的区别,还有一个是案例之间有空行

code:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
int q[N];
int stk[N];
int BSearch(int l,int r, int c)
{
while(l<=r){//注意这里应该是定于的时候还要再判断一次。
int m = (l+r)>>;
if(stk[m]==c) {
//printf("id = %d\n",m);
return m;
}
else if(stk[m]<c) l = m+;
else if(stk[m]>c) r = m-;
}
//printf("id = %d\n",l);
return l;
}
int main()
{
int n;
int c = ;
while(~scanf("%d",&n))
{
int cnt = ;
int t1,t2;
memset(stk,-,sizeof(stk));
for(int i = ; i < n; i++){
scanf("%d%d",&t1,&t2);
q[t1] = t2;
}
for(int i = ; i <= n; i++){
if(q[i]>stk[cnt-]){
stk[cnt++] = q[i];
}
else {
int id = BSearch(,cnt-,q[i]);
stk[id] = q[i];
}
}
cnt--;
if(cnt!=)
printf("Case %d:\nMy king, at most %d roads can be built.\n\n",c++,cnt);
else
printf("Case %d:\nMy king, at most %d road can be built.\n\n",c++,cnt);
}
return ;
}

hdu_1025(LIS Nlog(N)算法)的更多相关文章

  1. O(nlogn)LIS及LCS算法

    morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len. ...

  2. POJ 1631 Bridging signals(LIS O(nlogn)算法)

    Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...

  3. LIS的优化算法O(n log n)

    LIS的nlogn的优化:LIS的优化说白了其实是贪心算法,比如说让你求一个最长上升子序列把,一起走一遍. 比如说(4, 2, 3, 1, 2,3,5)这个序列,求他的最长上升子序列,那么来看,如果求 ...

  4. 最长上升子序列(LIS)n2 nlogn算法解析

    题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那 ...

  5. hdu 1950 最长上升子序列(lis) nlogn算法【dp】

    这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...

  6. Codeforces 486E LIS of Sequence --树状数组求LIS

    题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i] ...

  7. 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...

  8. LIS

    五:LIS 概念 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列.比如一个序列31 2 6 3 8,他的最长 ...

  9. 动态规划:最长上升子序列(LIS)

    转载请注明原文地址:http://www.cnblogs.com/GodA/p/5180560.html 学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest  incre ...

随机推荐

  1. 一些常用的vim编辑器快捷键:

    一些常用的vim编辑器快捷键: h」.「j」.「k」.「l」,分别控制光标左.下.上.右移一格. 按「ctrl」+「b」:屏幕往“后”移动一页. 按「ctrl」+「f」:屏幕往“前”移动一页. 按「c ...

  2. xamarin android menu的用法

    在Android中的菜单有如下几种: OptionMenu:选项菜单,android中最常见的菜单,通过Menu键来调用 SubMenu:子菜单,android中点击子菜单将弹出一个显示子菜单项的悬浮 ...

  3. HDU4992 求所有原根

    Primitive Roots Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. lesson - 4 Linux目录文件管理

    内容概要:1. 和目录相关的几个命令mkdir 关注-p选项 rmdir 同样也有一个-p选项rm -r -f 两个常用选项cp -r 针对目录, 有时我们使用/bin/cpmv 重命名或者移动, 有 ...

  5. asp.net core 2.0+sqlsugar搭建个人网站系列(0)

    一些废话 马上就要过年了,回顾这一年最大的收获就是技术有了很大的提升,其他的方面没有什么改变,现在还是单身小屌丝一枚. 这一年来学习的主要重点就是asp.net core,中间也使用 core+EF做 ...

  6. 由linux命令谈学习操作系统的重要性

    linux命令妙趣横生,喜欢敲命令行的人会深有体会,但是没有系统学习过操作系统的话,很多命令还是难以理解的.讲实在话,大多数linux爱好者常敲的都是这些方面的: 文件系统 磁盘 网络 系统状态 账户 ...

  7. centos7 部署dns服务器

    =============================================== 2017/12/6_第2次修改                       ccb_warlock 20 ...

  8. MySQL数据库学习: 01 —— 数据库的概述

    壹 概述 一 了解SQL 1.1 数据库基础 1.1.1 什么是数据库 数据库(database)保存有组织的数据的容器(通常是一个文件或一组文件). 易混淆:人们常常用“数据库”这个词语来代表他们使 ...

  9. NOI 2005维护数列

    题目描述 请写一个程序,要求维护一个数列,支持以下 6 种操作:(请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格) 输入输出格式 输入格式: 输入文件的第 1 行包含两个数 N 和 M, ...

  10. linux保持管道中颜色显示

    在linux工作中,不同类型的文件以不同的颜色显示,如文件夹显示蓝色,压缩文件显示橘黄色,可执行文件显示为绿色,链接失效文件高亮显示等等: 有时候根据颜色可以快速鉴别,如我有时为了保持目录的完整性,会 ...