Scikit-Learn与决策树
Scikit-Learn(决策树)可以用于方法分类和回归。
一、分类
sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-07, class_weight=None, presort=False)参数探讨
- criterion :('Gini'、‘entropy’)表示在基于特征划分数据集合时,选择特征的标准。默认是’gini‘,即'Gini impurity'(Gini不纯度),还可以是criterion='entropy'。Gini不纯度表示该Gini度量是指随机选择集合中的元素,根据集合中label的分布将该元素赋予分类,该元素分类错误的几率;entropy则表示采用信息增益来选择特征。别人看法:criterion=entropy应该理解为决策树采用的是ID3算法,而不是cart树。
- splitter :('best' , 'random')表示在构造树时,选择结点的原则,默认是splitter='best',即选择最好的特征点分类,比如基于信息增益分类时,则选择信息增益最大的特征点,还可以是'random'
- max_depth :int,default=None,表示树的最大深度。默认为"None",表示树的最大深度。如果是"None",则节点会一直扩展直到所有的叶子都是纯的或者所有的叶子节点都包含少于min_samples_split个样本点。忽视max_leaf_nodes是不是为None。
- min_samples_split :int,float,optional(default=2),区分一个内部节点需要的最少的样本数。1.如果是int,将其最为最小的样本数。2.如果是float,min_samples_split是一个百分率并且ceil(min_samples_split*n_samples)是每个分类需要的样本数。ceil是取大于或等于指定表达式的最小整数。
- min_samples_leaf :int,float,optional(default=1),一个叶节点所需要的最小样本数。 1.如果是int,则其为最小样本数。 2.如果是float,则它是一个百分率并且ceil(min_samples_leaf*n_samples)是每个节点所需的样本数。
- min_weight_fraction_leaf :float,optional(default=0),如果设置为0,则表示所有样本的权重是一样的
- max_features :这个参数表示在划分数据集时考虑的最多的特征值数量,根据数据类型表示的意义也不同。int值,在每次split时,最大特征数;float,表示百分数,即(max_features * n_features);'auto'->max_features=sqrt(n_features);'sqrt'->max_features=sqrt(n_features);
- max_leaf_nodes :int,None,optional(default=None),主要是在最优分类中考虑
- class_weight :dict,list of dicts,"Banlanced" or None,可选(默认为None)如果没有指定,所有类的权值都为1。对于多输出问题,一列字典的顺序可以与一列y的次序相同。 "balanced"模型使用y的值去自动适应权值,并且是以输入数据中类的频率的反比例。如果sample_weight已经指定了,这些权值将于samples以合适的方法相乘。
- persort :bool,可选(默认为False)是否预分类数据以加速训练时最好分类的查找。在有大数据集的决策树中,如果设为true可能会减慢训练的过程。当使用一个小数据集或者一个深度受限的决策树中,可以减速训练的过程。
- min_impurity_split :float, optional (default=1e-7),树增长停止阈值,仅仅当他的impurity超过阈值时才会继续向下分解,否则会成为叶结点
例子:
from sklearn import tree X = [[1, 1],[1, 1], [1, 0],[0, 1], [0, 1]]
Y = [1, 1, 0, 0, 0] clf = tree.DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(X, Y)
#predict_proba(X, check_input=True) 预测x中的分类概率
result = clf.predict([0,0])
print result
训练后,我们可以使用导出器以Graphviz(需要单独安装)格式导出树export_graphviz 。
with open("iris.dot", 'w') as f:
f = tree.export_graphviz(clf, out_file=f)
然后我们可以使用的Graphviz的dot工具来创建一个PDF文件(或任何其他支持的文件类型)
dot -Tpdf iris.dot -o iris.pdf
二、回归
sklearn.tree.DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-07, presort=False)
- criteria:string,可选(default =“mse”)。测量分割质量的功能。对于均方误差,支持的标准是“mse”,其等于作为特征选择标准的方差减小,以及平均绝对误差的“mae”。
其他参与与DecisionTreeClassifier类似
from sklearn import tree X = [[1],[2],[3],[4],[5],[6]]
Y = [1,2,3,4,5,6] clf = tree.DecisionTreeRegressor(criterion='mae')
clf = clf.fit(X, Y)
result = clf.predict([4])
print result
输出:
[ 4.]
Scikit-Learn与决策树的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 如何使用scikit—learn处理文本数据
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
- Python第三方库(模块)"scikit learn"以及其他库的安装
scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...
随机推荐
- APUE-文件和目录(六)函数ftw和nftw
名字 ftw,nftw - 文件树遍历 概要 #include <ftw.h> int nftw(const char *dirpath, int (*fn) (const char *f ...
- 使用hashCode()和equals()方法 - Java
在这篇文章中,我将指出我对hashCode()和equals()方法的理解.我将讨论它们的默认实现以及如何正确地覆盖它们.我还将使用Apache Commons包中的实用工具类来实现这些方法. has ...
- Linux命令 用户管理命令
groupadd [功能说明] 新建用户组 [语法格式] Groupadd[-f][-r][-g<GID><-o>][组名] [选项参数] 参数 说明 -f 建立已存在的组,强 ...
- Discuz更改默认搜索模块
由于网站使用DZ的侧重点不同,在搜索中可能需要更改默认搜索模块 首先找到模板中搜索模块对应的文件,默认模板中搜索模块的地址是 template\default\common\pubsearchform ...
- Redis客户端管理工具的安装及使用
1.下载及安装 请到官网下载:www.treesoft.cn,要最新的版本treeNMS, window系统下载直接解压,就可以用了,免安装,免布署. 2.登录及连接参数配置 登录后,要配置连接参数信 ...
- Android 设计模式实战之关于封装计费代码库的策略模式详谈
写在之前 这周生活上出现了很多的不如意,从周一开始就觉得哪里出现了问题,然后就是各种烦躁的情绪,后来事情还真是如预感的那样发生了,很是心痛,但也无可奈何,希望大家都好好珍惜自己身边的人:友人,亲人,家 ...
- jquery水平导航菜单展示
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Spring Web 配置文件加载路径问题
Spring: 定位 载入 注册 我们常用的加载context文件的方法有如下三个: 1.FileSystemXmlApplicationContext 这个方法是从文件绝对路径加载配置文 ...
- Openfire的web插件开发
概要 Openfire不仅支持普通插件开发,还支持完整的web插件开发,这次就web插件开发做一个小的实例,本文主要讲解如何加入Servlet和Jsp页面,基本插件的开发请参照上一篇文章. 准备 系统 ...
- http(一)web和网络基础
深入学习http不为别的,只为补充底层知识,打好根基,深入了解其他技术,擒贼先擒王,学好九阳神功以后,乾坤大挪移,太极剑就容易了,急于求成,就只能变周芷若.走着...... 来源于:图解HTTP 1. ...