题目背景

题目名称是吸引你点进来的

实际上该题还是很水的

题目描述

区间质数个数

输入输出格式

输入格式:

一行两个整数 询问次数n,范围m

接下来n行,每行两个整数 l,r 表示区间

输出格式:

对于每次询问输出个数 t,如l或r∉[1,m]输出 Crossing the line

输入输出样例

输入样例#1:

2 5
1 3
2 6
输出样例#1:

2
Crossing the line

说明

【数据范围和约定】

对于20%的数据 1<=n<=10 1<=m<=10

对于100%的数据 1<=n<=1000 1<=m<=1000000 -10^9<=l<=r<=10^9 1<=t<=1000000

 //#include <iostream>
 //#include <algorithm>
 //#include <cstdio>
 //#include <cmath>
 //#include <cstdlib>
 //#include <cstring>
 //#include <queue>
 //#include <vector>
 //#include <map>
 //#include <set>
 //#include <iterator>
 //#include <functional>
 #include <bits/stdc++.h>
 using namespace std;
 ;
 }, num_prime=;
 ,},m;
 inline int also()
 {
     ; i<m; i++)
     {
         if (! isNotPrime[i])
         {
             prime[num_prime++] = i;
         }
         ; j<num_prime&&i*prime[j]<m; j++)
         {
             isNotPrime[i*prime[j]] = ;
             if (!(i%prime[j]))
                 break;
         }
     }

 }
 ];
 int main()
 {
     int n,l,r;
     scanf("%d%d",&n,&m);
     also();
     ; i<=m; i++)
     {
         ]+;
         ];
     }
     while(n--)
     {
         scanf("%d%d",&l,&r);
         if(l>r) l^=r^=l^=r;
         >l||m<r) printf("Crossing the line.\n");
         else printf("%d\n",a[r]-a[l]);
     }
     ;
 }

[线性筛]P1865 A % B Problem的更多相关文章

  1. 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...

  2. 【数论线性筛】洛谷P1865 A%B problem

    题目背景 题目名称是吸引你点进来的 实际上该题还是很水的 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对 ...

  3. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  4. POJ 3126 - Prime Path - [线性筛+BFS]

    题目链接:http://poj.org/problem?id=3126 题意: 给定两个四位素数 $a,b$,要求把 $a$ 变换到 $b$.变换的过程每次只能改动一个数,要保证每次变换出来的数都是一 ...

  5. Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划

    In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...

  6. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  7. SPOJ PRIME1 - Prime Generator(线性筛)

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  8. 【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography

    暴力搞肯定不行,因此我们从小到大枚举素数,用n去试除,每次除尽,如果已经超过20,肯定是no.如果当前枚举到的素数的(20-已经找到的质因子个数)次方>剩下的n,肯定也是no.再加一个关键的优化 ...

  9. Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论

    题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...

随机推荐

  1. C#基础之转换

    C#中一共有两种转换方式,隐式转换和显示转换 隐式转换:就是不需要声明就能进行的转换,通俗来说就是小范围内的数据类型转大范围数据类型 显示转换:就是通常说的强制转换,需要在代码中写明要的数据类型.通俗 ...

  2. checkbox插件

    1.全选或者全不选 首先判断全选或全不选checkbox是否被选中. 如果被选中,则为每个选项checkbox设置obj.checked='checked'; 如果未被选中,则为每个选项checkbo ...

  3. 【NOIP2016提高组】 Day2 T1 组合数问题

    题目传送门:https://www.luogu.org/problemnew/show/P2822                 ↓题目大意↓ 数据的极限范围:n,m≤2000,k≤21,数据组数≤ ...

  4. HandlerMapping 和 HandlerAdapter

    HandlerMapping 负责根据request请求找到对应的Handler处理器及Interceptor拦截器,将它们封装在HandlerExecutionChain 对象中给前端控制器返回. ...

  5. QT:用QWebSocket实现webchannel,实现C++与HTML通信

    基本原理是通过channel将C++对象暴露给HTML,在HTML中调用qwebchannel.js.前提是建立transport,QT只提供了一个抽象基类QWebChannelAbstractTra ...

  6. LeetCode 59. Spiral Matrix II (螺旋矩阵之二)

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  7. LeetCode 15. 3Sum(三数之和)

    Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all un ...

  8. c#public、private、protected、internal、protected internal修饰符及访问权限

    c#public.private.protected.internal.protected internal修饰符及访问权限 public 公有访问.不受任何限制. private 私有访问.只限于本 ...

  9. 前端性能优化jQuery性能优化

    一.使用合适的选择器 $("#id"); 1.使用id来定位DOM元素无疑是最佳提高性能的方式,因为jQuery底层将直接调用本地方法document.getElementById ...

  10. Linux学习(十三)du、df、fdisk磁盘分区

    一.du du命令是查看文件或者目录大小的命令. 一般使用du -sh 查看,不用-sh参数意义也不大,应为不用这个参数,它会把目录下的所有文件大小递归的显示出来,就像这样: 如果用-sh参数: [r ...