It has been possible for some years to launch a web map from within R. A number of packages for doing this are available, including:

  • RgoogleMaps, an interface to the Google Maps api
  • leafletR, an early package for creating Leaflet maps with R
  • rCharts, which can be used as a basis for webmaps

In this tutorial we use the new RStudio-supported leaflet R package. We use this package, an R interface to theJavaScript mapping library of the same name because:

  • leaflet is supported by RStudio, who have a track strong track record of creating amazing R packages
  • leaflet appears to provide the simplest, fastest way to host interactive maps online in R, requiring only 2 lines of code for one web map! (as you’ll see below)
  • leaflet is shiny. Shiny in the literal sense of the word (a new and fresh approach to web mapping in R) but also in the sense that it works well with the R package shiny.

The best tutorial resource I have found on leaflet is this vignette by Joe Cheng and Yihui Xie. Building on their excellent description, this article explains some of the fundamentals of the package.

Installing leaflet

Because leaflet is new, it’s not yet on CRAN. Even when it does appear, installing from github may be a good idea, to ensure you have access to the latest features and bug fixes. Here’s how:

# Install leaflet package
if(!require(leaflet)) install_github("rstudio/leaflet")

A first web map with leaflet

To create an interactive web map with leaflet is incredibly easy. Having installed the package try this single line of code:

# Plot a default web map (brackets display the result)
(m <- leaflet() %>% addTiles())
img <- readPNG("~/repos/Creating-maps-in-R/figure//shiny_world.png")
grid.raster(img)

Adding basic features with %>%

Adding basic features to your webmap is easy. The %>% ‘pipe’ operator used extensively in dplyr and developed for the maggrittr package means we can finally escape from dozens of nested bracketted commands. (If you use RStudio, I suggest trying the new shortcut Ctl+Shift+M to produce this wonderful operator.) leaflet settings and functionality can thus be added sequentially, without requiring any additional brackets!

To add a location to the map m, for example, we can simply pipe m into the function setView():

m %>% setView(lng = -1.5, lat = 53.4, zoom = 10) # set centre and extent of map

This way we can gradually add elements to our map, one-by-one:

(m2 <- m %>%
setView(-1.5, 53.4, 10) %>% # map location
addMarkers(-1.4, 53.5) %>% # add a marker
addPopups(-1.6, 53.3, popup = "Hello Sheffield!") %>% # popup
# add som circles:
addCircles(color = "black", runif(90, -2, -1), runif(90, 53, 54), runif(90, 10, 500)))

Adding data

In the previous example, we added some random data that we created locally, inside the function call. How do we use real, large datasets in leaflet? The package provides 3 options:

  • Data from base R: lat/long matrix or data.frame
  • Data from sp such as SpatialPoints and SpatialPolygons
  • Data from maps

Let’s try adding a bicycle route, one that I followed with some friends to move from Sheffield to my current home of Leeds. First download some data:

url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget")

Now we can load this as a SpatialLinesDataFrame and display in leaflet:

library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks")
m2 %>%
setView(-1.5, 53.4, 9) %>% # map location
addPolylines(data = shef2leeds, color = "red", weight = 4)

Note in the above example that we had to use the argument data = to refer to our spatial object: it cannot simply be inserted without specifying what it is. The data argument can also be placed inside the initialleaflet() function call.

That was quite a painless process that would many more lines of code if you were to use JavaScript. But not as painless as the bicycle trip itself, which involved fewer lines of code still: 0! This can be seen in the following video.

Shiny integration

leaflet is developed by the same team who develop shiny so the two are well integrated. Below is a very simple example, modified slightly from the package’s vignette:

library(shiny)
shinyApp(
ui = fluidPage(leafletOutput('myMap')),
server = function(input, output) { # download and load data
url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget", )
library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks") map = leaflet() %>% addTiles() %>% setView(-1.5, 53.4, 9) %>%
addPolylines(data = shef2leeds, color = "red", weight = 4)
output$myMap = renderLeaflet(map)
}
)

Applications

Clearly leaflet is a powerful and flexible R package. If I were to offer one critique, it would be that I could find no easy way to allow the user to query the data objects loaded. plotly, for example, provides a description of any visual object the user clicks on. The datashine commuter visualisation, for example allows users to click on any point, resulting in a burst of lines emenating from it. This would also be possible in leaflet/shiny, but the best implementation is not immediately clear, to me at least!

The wider context of this article is the pressing need for better transport planning decision making, to enable a transition away from fossil fuels. To this end, the ‘propensity to cycle’ project, funded by the UK’sDepartment for Transport, seeks to create an interactive tool to identify where new bicycle paths are most needed. There are clearly many other uses for R’s leaflet package: what will you use it for? Let me know at@robinlovelace.

转自:http://robinlovelace.net/r/2015/02/01/leaflet-r-package.html

The leaflet package for online mapping in R(转)的更多相关文章

  1. 解决Package is not available (for R version XXX)?

    目录 1. 更新R(不推荐) 2. 更改或指定镜像源 3.源码安装 安装R包时这个错误是经常见到的.我认为有几个方法可解决,记录之. 1. 更新R(不推荐) 简单粗暴的方法就是更新R,但这波及的范围太 ...

  2. R扩展包

    log10() .libPaths()#查看R包目录 library()#查看以前安装的函数 search() #安装R包的方式 install.packages("car")#安 ...

  3. 轻松创建R语言函数包

    讲真,用R这么几年,始终未尝试过写自己的包,看来这就是我与真正程序员的差距了——编程习惯等于没有. 昨天一个偶然的机会想开始写自己的工具包,发现了前期教程的有一些过时.于是,写一个**windows* ...

  4. R语言 recommenderlab 包

    recommend li_volleyball 2016年3月20日 library(recommenderlab) ## Warning: package 'recommenderlab' was ...

  5. R语言-神经网络包RSNNS

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  6. arcpy.mapping常用四大件-StyleItem

    arcpy.mapping常用四大件-StyleItem by 李远祥 StyleItem 笔者将其归类到arcpy.mapping的四大件当中,主要是因为它的独特之处,就是其能力是直接读取.styl ...

  7. arcpy.mapping实战-专题图制图自动化

    arcpy.mapping实战-专题图制图自动化 by 李远祥 最初对arcpy.mapping感兴趣是因为一次大规模的专题地图调整的需要,由于某某单位利用ArcEngine编写的专题图出图系统,出现 ...

  8. arcpy.mapping常用四大件-MapsurroundElement

    arcpy.mapping常用四大件-MapsurroundElement by 李远祥 在arcpy.mapping 中,除了数据入口MapDocument.图层Layer之外,另一重要的角色就是M ...

  9. arcpy.mapping常用四大件-MapDocument

    arcpy.mapping常用四大件-MapDocument by 李远祥 点开arcpy.mapping的帮助,可以看到其有限的几个类,看起来东西不是很多,但却是非常的使用.由于arcpy定位就是粗 ...

随机推荐

  1. ML(4): NavieBayes在R中的应用

    朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法, 具体见上一节. 算法包:e1071 函数:navieBayes(formule,data,laplace=0,...,subset,na.act ...

  2. Linux常用命令List

    参考<linux命令行大全> 一.文件命令 cd - 切换为之前目录 wc -l -w file cmd --help apropos keyword apropos cpu > t ...

  3. python css概述

    1. 概述 css是英文Cascading Style Sheets的缩写,称为层叠样式表,用于对页面进行美化. 存在方式有三种:元素内联.页面嵌入和外部引入,比较三种方式的优缺点. 语法:style ...

  4. 《Python自然语言处理》第二章 学习笔记

    import nltk from nltk.book import * nltk.corpus.gutenberg.fileids() emma = nltk.corpus.gutenberg.wor ...

  5. SysTick定时器

    SysTick是一个24位的倒计数定时器,当计到0时,将从RELOAD寄存器中自动重装载定时初值.只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息.下边小结了SysTick的相关寄 ...

  6. Asp.net Authorization 学习

    其实使用新的Identity以来一直有一个疑惑,之前的角色管理 在新的Identity中怎么管理的.[AspNetUserClaims] 在新的授权管理中又占什么位置 第一,根据角色授权,刚刚注册的用 ...

  7. 自定义TextView跑马灯

    本篇主要介绍TextView的可控制跑马灯效果实现. Android自带的TextView添加几个属性就可以实现跑马灯效果,大概是这样 android:ellipsize="marquee& ...

  8. 使用SSH框架查出的实体集合用AJAX形式刷新到页面JOSONArray报异常

    所报异常:net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 问题根源:数据库中查出的日期是java.sql. ...

  9. 基础才是重中之重~关于ThreadStatic和Quartz的一点渊源

    回到目录 ThreadStatic ThreadStatic是C#里的一个特性,它可以让你的字段在一个线程里有效,但你不能控制这个字段在何时被回收,即如果声明一个int32的字段为ThreadStat ...

  10. Unix系统操作指令汇总

    一.目录及文件操作命令 1.1 ls 语法: ls [-RadCxmlnogrtucpFbqisf1] [目录或文件--] 说明: ls 命令列出指定目录下的文件,缺省目录为当前目录 ./,缺省输出顺 ...