本周内容较多,故分为上下两篇文章。

本文为下篇。

一、内容概要

1. Anomaly Detection

  • Density Estimation

    • Problem Motivation
    • Gaussian Distribution
    • Algorithm
  • Building an Anomaly Detection System(创建异常检测系统)
    • Developing and Evaluating an Anomaly Detection System
    • Anomaly Detection vs. Supervised Learning
    • Choosing What Features to Use
  • Multivariate Gaussion Distribution(多元高斯分布)
    • Multivariate Gaussion Distribution
    • Anomaly Detection using the Multivariate Gaussion Distribution

      2. Recommender System

  • Predicting Movie
    • Problem Formulation
    • Content Based Recommendations
  • Collaborative Filtering(协同过滤)
    • Collaborative Filtering
    • Collaborative Filtering Algorithm
  • Low Rank Matrix Factorization(低秩矩阵分解)
    • Vectorization(向量化): Low Rank Matrix Factorization
    • Implementational Detail:Mean Normalization
    • 二、重点&难点

Recommender System(推荐系统)

1.Predicting Movie

1)Problem Formulation

下面将以推荐电影为例来介绍推荐系统的实现。

movie Alice Bob Carol Dave
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute Puppies of love ? 4 0 ?
nonstop car chases 0 0 5 4
swords & karate 0 0 5 ?

上面的分数表示用户对该电影的评分(0~5分,?表示未获得评分数据)

为方便下面叙述,对如下符号进行说明:

  • \(n_u\):表示用户数量
  • \(n_m\):表示电影数量
  • r(i,j):如果等于1则表示用户j对电影i进行了评分
  • \(y^{(i,j)}\):表示用户j对电影i的评分

上面例子中可以知道 \(n_u=4 \quad n_m=5 \quad y^{(1,1)}=5\)

2)Content Based Recommendations(基于内容的推荐)

  • 1.获取特征向量

    为了实现推荐,我们为每部电影提取出了两个特征值,即x1(浪漫指数)和x2(动作指数)
movie Alice Bob Carol Dave x1 x2
Love at last 5 5 0 0 0.9 0.1
Romance forever 5 ? ? 0 1.0 0
Cute Puppies of love ? 4 0 ? 0.99 0.01
nonstop car chases 0 0 5 4 0.1 0.9
swords & karate 0 0 5 ? 0 1.0

由上表可知每部电影都可以用一组特征向量表示:

  • 每一步电影都加上一个额外的特征,即 \(x_0=1\)
  • 每部电影都有一个(3,1)的特征向量,例如第一部电影(Love at last):\(x^{(1)}=[1,0.9,0.1]^T\)
  • 对于所有数据我们有数据特征向量组为\(\{x^{(1)},x^{(2)},x^{(3)},x^{(4)},x^{(5)}\}\)

  • 2.特征权重θ

    用户j对电影i的评分预测可以表示为\((θ^j)^Tx^i=stars\)

  • 3. 线性回归预测

和线性回归一样,可以得到如下优化目标函数:

  • 对单个用户而言

\[\min_{θ^{(j)}}\frac{1}{2}\sum_{i;r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{k=1}^n (θ_k^{(j)})^2 \]

  • 对所有用户而言

\[\min_{θ^{(1)},...,θ^{(n_u)}}\frac{1}{2}\sum_{j=1}^{n_u}\sum_{i:r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2 \]

应用梯度下降:

\[当k=0,θ_k^{(j)}:=θ_k^{(j)}-α\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)}\]

\[当k≠0,θ_k^{(j)}:=θ_k^{(j)}-α\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)}+λθ_k^{(j)}\]

2.Collaborative Filtering(协同过滤)

1)Collaborative Filtering

在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数。相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征。即由θ求出x。

\[\min_{θ^{(1)},...,θ^{(n_m)}}\frac{1}{2}\sum_{j=1}^{n_u}\sum_{i:r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{j=1}^{n_m}\sum_{k=1}^n (θ_k^{(j)})^2 \]

注意累计符号的上限由\(n_u\)变成了\(n_m\)

但是如果我们既没有用户的参数也没有电影的特征该怎么办?这时协同过滤就可以起作用了,只需要对优化目标函数进行改进,如下:

\[J(x^{(1)},...,x^{(n_m)},θ^{(1)},...,θ^{(n_u)}) = \frac{1}{2}\sum_{(i,j):r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 \\ \quad\quad\quad\quad\quad\quad\quad +\frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2 \\ \quad\quad\quad\quad\quad\quad\quad+ \frac{λ}{2}\sum_{i=1}^{n_m}\sum_{k=1}^n (x_k^{(i)})^2\]

对代价函数求偏导结果如下:

\[x_k^{(i)} := x_k^{(i)} - α(\sum_{j:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )θ_k^{(j)} +λx_k^{(i)} ) \]

\[θ_k^{(j)} := θ_k^{(j)} - α(\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)} +λθ_k^{(j)} ) \]

协同过滤算法使用步骤如下:

  1. 初始 x (1) ,x (2) ,...,x (\(n_m\)) ,θ (1) ,θ (2) ,...,θ (\(n_u\)) 为一些随机小值
  2. 使用梯度下降算法最小化代价函数
  3. 在训练完算法后,我们预测\((θ ^{(j)} )^ T x^{ (i)}\) 为用户 j 给电影 i 的评分

3. Low Rank Matrix Factorization(低秩矩阵分解)

1)Vectorization(向量化): Low Rank Matrix Factorizationv

movie Alice Bob Carol Dave
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute Puppies of love ? 4 0 ?
nonstop car chases 0 0 5 4
swords & karate 0 0 5 ?

(同样的例子)很显然我们可以得到评分矩阵Y

\[Y= \left[
\begin{array}{cccc}
5&5&0&0 \\
5&?&?&0 \\
?&4&0&? \\
0&0&5&4 \\
0&0&5&0 \\
\end{array}
\right] \]

推出评分

\[
\begin{pmatrix}
(θ^{(1)})^T(x^{(1)}) &(θ^{(2)})^T(x^{(1)})& \cdots & (θ^{(n_u)})^T(x^{(1)}) \\
(θ^{(1)})^T(x^{(2)}) &(θ^{(2)})^T(x^{(2)})& \cdots & (θ^{(n_u)})^T(x^{(2)}) \\
\vdots & \vdots& \ddots & \vdots \\
(θ^{(1)})^T(x^{(n_m)}) &(θ^{(2)})^T(x^{(n_m)})& \cdots & (θ^{(n_u)})^T(x^{(n_m)}) \\
\end{pmatrix}
\]

如何寻找与电影i相关的电影j呢?满足\(||x^{(i)}-x^{(j)}||\)较小的前几部影片即可。

2)Implementational Detail:Mean Normalization

假如增加了一个用户marsggbo,他很单纯,这5部电影都还没看过,所以没有评分数据,这是可以通过均值正则化来初始化数据,具体实现如下:

movie Alice Bob Carol Dave Marsggbo
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute Puppies of love ? 4 0 ?
nonstop car chases 0 0 5 4
swords & karate 0 0 5 ?

此时的评分矩阵为

\[Y= \left[
\begin{array}{cccc}
5&5&0&0&? \\
5&?&?&0&? \\
?&4&0&?&? \\
0&0&5&4&? \\
0&0&5&0&? \\
\end{array}
\right] \]

首先求出每行的均值(未评分不用计算)

\[μ=\left[
\begin{array}
2.5 \\
2.5 \\
2 \\
2.25 \\
1.25
\end{array}
\right]→
Y= \left[
\begin{array}{cccc}
2.5&2.5&-2.5&-2.5&? \\
2.5&?&?&-2.5&? \\
?&2&-2&?&? \\
-2.25& -2.25&2.75&1.75&? \\
-1.25&-1.25&3.75&-1.25&? \\
\end{array}
\right]
\]

预测值为\((θ^{(j)})^T(x^{(i)})+μ_i\),因为优没有评分。所以化目的函数只需要\(min\frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2\),很显然\(θ=\vec0\),所以新增用户评分数据可初始化为均值,即

\[Y= \left[
\begin{array}{cccc}
5&5&0&0&2.5 \\
5&?&?&0&2.5 \\
?&4&0&?&2 \\
0&0&5&4&2.25 \\
0&0&5&0&1.25 \\
\end{array}
\right] \]


MARSGGBO♥原创







2017-8-14

Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)的更多相关文章

  1. Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)

    本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...

  2. Andrew Ng机器学习课程笔记--week5(下)

    Neural Networks: Learning 内容较多,故分成上下两篇文章. 一.内容概要 Cost Function and Backpropagation Cost Function Bac ...

  3. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  4. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  5. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  6. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  7. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  8. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  9. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

随机推荐

  1. PHP----SAPI

    SAPI:Server Application Programming Interface 服务器端应用编程端口.它就是PHP与其它应用交互的接口,PHP脚本要执行有很多种方式,通过Web服务器,或者 ...

  2. CSS外边距合并问题

    今天无意中碰到了外边距合并的问题,于是便研究了一下.这里做个笔记. 所谓外边距合并,指的是当两个垂直外边距相遇时,它们将形成一个外边距.合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者. ...

  3. nyoj_6:喷水装置(一)

    要让总的使用到的装置数尽可能少,则可以贪心每次选取未使用的半径最大的装置 题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=6 #inclu ...

  4. 怎么去掉javascript 的Array的重复项

    //完美去除法: var arr=[1,3,2,2,11,4]; var arr1=[]; var arr2=arr.sort(function(a,b){ return a-b; }); //把数组 ...

  5. 【Django】django 的request和response(转)

    当请求一个页面时,Django 把请求的 metadata 数据包装成一个 HttpRequest 对象,然后 Django 加载合适的 view 方法,把这个 HttpRequest 对象作为第一个 ...

  6. 再起航,我的学习笔记之JavaScript设计模式01

    我的学习笔记是根据我的学习情况来定期更新的,预计2-3天更新一章,主要是给大家分享一下,我所学到的知识,如果有什么错误请在评论中指点出来,我一定虚心接受,那么废话不多说开始我们今天的学习分享吧! 在通 ...

  7. 小程序server-3-搭建WebSocket 服务

    小程序server-3-搭建WebSocket 服务: 1.安装 Node 模块 使用 ws 模块来在服务器上支持 WebSocket 协议,下面使用 NPM 来安装: cd /var/www/wxp ...

  8. RobotFramework自动化测试框架的基础关键字(五)

    1.1.1        Run Keyword If判断的使用 Run Keyword If是一个常用的用来做逻辑判断的关键字,意思是如果满足了某一个判断条件,然后就会执行关键字,我们对list3中 ...

  9. 用于NLP的CNN架构搬运:from keras0.x to keras2.x

    本文亮点: 将用于自然语言处理的CNN架构,从keras0.3.3搬运到了keras2.x,强行练习了Sequential+Model的混合使用,具体来说,是Model里嵌套了Sequential. ...

  10. 微信小程序movable-view移动图片和双指缩放

    先从movable-view开始说起吧. movable-view是小程序自定义的组件.其描述为:"可移动的视图容器,在页面中可以拖拽滑动". 官方文档地址:https://mp. ...