iOS音频格式PCM转G711u(或G711a-law)
请尊重作者劳动成果,如需转载本博客文章请注明出处!谢谢合作!
inputData是PCM的实时数据,可以通过转码,获取到最后导出的G711u数据(sendData)
NSUInteger datalength = [inputData length];
Byte *byteData = (Byte *)[inputData bytes];
short *pPcm = (short *)byteData;
int outlen = 0;
int len =(int)datalength / 2;
Byte * G711Buff = (Byte *)malloc(len);
memset(G711Buff,0,len);
int i;
for (i=0; i<len; i++) {
//此处修改转换格式(a-law或u-law)
G711Buff[i] = linear2alaw(pPcm[i]);
}
outlen = i;
Byte *sendbuff = (Byte *)G711Buff;
NSData * sendData = [[NSData alloc]initWithBytes:sendbuff length:len];
[self.delegate backVoiceDataWithG711u:sendData];
---------------------------------------------
转码文件
G711.h
#ifndef __G_711_H_
#define __G_711_H_
#include <stdint.h>
enum _e_g711_tp
{
TP_ALAW, //G711A
TP_ULAW //G711U
};
unsigned char linear2alaw(int pcm_val); /* 2's complement (16-bit range) */
int alaw2linear(unsigned char a_val);
unsigned char linear2ulaw(int pcm_val); /* 2's complement (16-bit range) */
int ulaw2linear(unsigned char u_val);
unsigned char alaw2ulaw(unsigned char aval);
unsigned char ulaw2alaw(unsigned char uval);
int g711_decode(void *pout_buf, int *pout_len, const void *pin_buf, const int in_len , int type);
#endif
------------------
G711.cpp文件
/*
* g711.c
*
* u-law, A-law and linear PCM conversions.
*/
//#include "stdafx.h"
#include <stdint.h>
#include <stdio.h>
#include "g711.h"
#define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
#define QUANT_MASK (0xf) /* Quantization field mask. */
#define NSEGS (8) /* Number of A-law segments. */
#define SEG_SHIFT (4) /* Left shift for segment number. */
#define SEG_MASK (0x70) /* Segment field mask. */
static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
/* copy from CCITT G.711 specifications */
unsigned char _u2a[128] = { /* u- to A-law conversions */
1, 1, 2, 2, 3, 3, 4, 4,
5, 5, 6, 6, 7, 7, 8, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 29, 31, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44,
46, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128};
unsigned char _a2u[128] = { /* A- to u-law conversions */
1, 3, 5, 7, 9, 11, 13, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 48, 49, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 64,
65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127};
static int
search(
int val,
short *table,
int size)
{
int i;
for (i = 0; i < size; i++) {
if (val <= *table++)
return (i);
}
return (size);
}
/*
* linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
*
* linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
*
* Linear Input Code Compressed Code
* ------------------------ ---------------
* 0000000wxyza 000wxyz
* 0000001wxyza 001wxyz
* 000001wxyzab 010wxyz
* 00001wxyzabc 011wxyz
* 0001wxyzabcd 100wxyz
* 001wxyzabcde 101wxyz
* 01wxyzabcdef 110wxyz
* 1wxyzabcdefg 111wxyz
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
unsigned char
linear2alaw(
int pcm_val) /* 2's complement (16-bit range) */
{
int mask;
int seg;
unsigned char aval;
if (pcm_val >= 0) {
mask = 0xD5; /* sign (7th) bit = 1 */
} else {
mask = 0x55; /* sign bit = 0 */
pcm_val = -pcm_val - 8;
}
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_end, 8);
/* Combine the sign, segment, and quantization bits. */
if (seg >= 8) /* out of range, return maximum value. */
return (0x7F ^ mask);
else {
aval = seg << SEG_SHIFT;
if (seg < 2)
aval |= (pcm_val >> 4) & QUANT_MASK;
else
aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
return (aval ^ mask);
}
}
/*
* alaw2linear() - Convert an A-law value to 16-bit linear PCM
*
*/
int
alaw2linear(
unsigned char a_val)
{
int t;
int seg;
a_val ^= 0x55;
t = (a_val & QUANT_MASK) << 4;
seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
switch (seg) {
case 0:
t += 8;
break;
case 1:
t += 0x108;
break;
default:
t += 0x108;
t <<= seg - 1;
}
return ((a_val & SIGN_BIT) ? t : -t);
}
#define BIAS (0x84) /* Bias for linear code. */
/*
* linear2ulaw() - Convert a linear PCM value to u-law
*
* In order to simplify the encoding process, the original linear magnitude
* is biased by adding 33 which shifts the encoding range from (0 - 8158) to
* (33 - 8191). The result can be seen in the following encoding table:
*
* Biased Linear Input Code Compressed Code
* ------------------------ ---------------
* 00000001wxyza 000wxyz
* 0000001wxyzab 001wxyz
* 000001wxyzabc 010wxyz
* 00001wxyzabcd 011wxyz
* 0001wxyzabcde 100wxyz
* 001wxyzabcdef 101wxyz
* 01wxyzabcdefg 110wxyz
* 1wxyzabcdefgh 111wxyz
*
* Each biased linear code has a leading 1 which identifies the segment
* number. The value of the segment number is equal to 7 minus the number
* of leading 0's. The quantization interval is directly available as the
* four bits wxyz. * The trailing bits (a - h) are ignored.
*
* Ordinarily the complement of the resulting code word is used for
* transmission, and so the code word is complemented before it is returned.
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
unsigned char
linear2ulaw(
int pcm_val) /* 2's complement (16-bit range) */
{
int mask;
int seg;
unsigned char uval;
/* Get the sign and the magnitude of the value. */
if (pcm_val < 0) {
pcm_val = BIAS - pcm_val;
mask = 0x7F;
} else {
pcm_val += BIAS;
mask = 0xFF;
}
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_end, 8);
/*
* Combine the sign, segment, quantization bits;
* and complement the code word.
*/
if (seg >= 8) /* out of range, return maximum value. */
return (0x7F ^ mask);
else {
uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
return (uval ^ mask);
}
}
/*
* ulaw2linear() - Convert a u-law value to 16-bit linear PCM
*
* First, a biased linear code is derived from the code word. An unbiased
* output can then be obtained by subtracting 33 from the biased code.
*
* Note that this function expects to be passed the complement of the
* original code word. This is in keeping with ISDN conventions.
*/
int
ulaw2linear(
unsigned char u_val)
{
int t;
/* Complement to obtain normal u-law value. */
u_val = ~u_val;
/*
* Extract and bias the quantization bits. Then
* shift up by the segment number and subtract out the bias.
*/
t = ((u_val & QUANT_MASK) << 3) + BIAS;
t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
}
/* A-law to u-law conversion */
unsigned char
alaw2ulaw(
unsigned char aval)
{
aval &= 0xff;
return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
(0x7F ^ _a2u[aval ^ 0x55]));
}
/* u-law to A-law conversion */
unsigned char
ulaw2alaw(
unsigned char uval)
{
uval &= 0xff;
return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
(0x55 ^ (_u2a[0x7F ^ uval] - 1)));
}
int g711_decode(void *pout_buf, int *pout_len, const void *pin_buf, const int in_len , int type)
{
int16_t *dst = (int16_t *) pout_buf;
uint8_t *src = (uint8_t *) pin_buf;
uint32_t i = 0;
int Ret = 0;
if ((NULL == pout_buf) || \
(NULL == pout_len) || \
(NULL == pin_buf) || \
(0 == in_len))
{
return -1;
}
if (*pout_len < 2 * in_len)
{
return -2;
}
//---{{{
if (TP_ALAW == type)
{
for (i = 0; i < in_len; i++)
{
//*(dst++) = alawtos16[*(src++)];
*(dst++) = (int16_t)alaw2linear(*(src++));
}
}else
{
for (i = 0; i < in_len; i++)
{
//*(dst++) = alawtos16[*(src++)];
*(dst++) = (int16_t)ulaw2linear(*(src++));
}
}
//---}}}
*pout_len = 2 * in_len;
Ret = 2 * in_len;
return Ret;
}
iOS音频格式PCM转G711u(或G711a-law)的更多相关文章
- iOS音频学习笔记一:常见音频封装格式及编码格式
(1) pcm格式 pcm是经过话筒录音后直接得到的未经压缩的数据流 数据大小=采样频率*采样位数*声道*秒数/8 采样频率一般是22k或者44k,位数一般是8位或者16位,声道一 ...
- 音频格式RAW和PCM区别和联系
定义: RAW:在一些外国品牌的播放机中名为 BitSream,我们通常称为“源码”.意义是把光盘上的音频格式不加处理地.“原汁原味”地从同轴和光纤输出.这就要求用户的功放具备这种音频格式的解码功能 ...
- Swift iOS实现把PCM语音转成MP3格式
最近折腾了swift的语音录制识别和转码,这块还是比较坑的,由于语音识别的准确度实测大概也就80%左右,所以还是需要上传录音文件啊.首先是用讯飞语音SDK实现语音录制和识别(语音听写),第一个坑是讯飞 ...
- 一篇对iOS音频比较完善的文章
转自:http://www.cnblogs.com/iOS-mt/p/4268532.html 感谢作者:梦想通 前言 从事音乐相关的app开发也已经有一段时日了,在这过程中app的播放器几经修改我也 ...
- 《转》iOS音频视频初级开发
代码改变世界 Posts - 73, Articles - 0, Comments - 1539 Cnblogs Dashboard Logout HOME CONTACT GALLERY RSS ...
- iOS音频
随着移动互联网的发展,如今的手机早已不是打电话.发短信那么简单了,播放音乐.视频.录音.拍照等都是很常用的功能.在iOS中对于多媒体的支持是非常强大的,无论是音视频播放.录制,还是对麦克风.摄像头的操 ...
- IOS 音频开发文件大小计算
音频基础知识 音频文件计算大小 音频转码 标签(空格分隔): 调查 IOS音频 https://developer.apple.com/library/ios/documentation/MusicA ...
- iOS:音频
ios中有很多支持音频的控件,如:播放本地音乐(file URL)的AVAudioPlayer和AudioToolbox.Framework.可以播放音乐库音乐的MPMusicPlayerContro ...
- 在不同平台上CocosDenshion所支持的音频格式
在大多数平台上,cocos2d-x调用不同的SDK API来播放背景音乐和音效.CocosDenshion在同一时间只能播放一首背景音乐,但是能同时播放多个音效. 背景音乐 Platform supp ...
随机推荐
- 配置VNC SERVER 远程访问
1.安装软件包 # yum install tigervnc-server -y 2. 配置VNC用户 # vim /etc/sysconfig/vncservers VNCSERVERS=" ...
- 命令行利用KVM创建虚拟机
一,实验环境 OS:CENTOS6.5 X86_64 二,KVM宿主环境配置 1.cat /proc/cpuinfo | egrep 'vmx|svm' //查看是否支持虚拟技术 2.安装KVM相关 ...
- 团队作业4——第一次项目冲刺 SiStH DaY
项目冲刺--??? 你以为penta kill以后就没事了嘛,就没得写了吗?你还期待我会给你一个六杀?七杀?别逗了,你以为你玩三国杀呢,做项目这么严肃的事情,怎么能玩笑. 那么我就在这里明明白白地告诉 ...
- Beta阶段项目复审
复审人:王李焕 六指神功:http://www.cnblogs.com/teamworkers/ wt.dll:http://www.cnblogs.com/TeamOf/ 六个核桃:http://w ...
- 201521123107 《Java程序设计》第7周学习总结
第7周作业-集合 1.本周学习总结 2.书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码如下: public boolean contains( ...
- 控制结构(9) 管道(pipeline)
// 上一篇:线性化(linearization) // 下一篇:指令序列(opcode) 最近阅读了酷壳上的一篇深度好文:LINUX PID 1 和 SYSTEMD.这篇文章介绍了systemd干掉 ...
- 201521123103 《Java程序设计》第三周学习总结
一.本周学习总结 二.书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; pub ...
- 201521123063 《Java程序设计》 第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图.Onenote或其他)归纳总结多数据库相关内容. 2. 书面作业 1. MySQL数据库基本操作 1.1 建立数据库test.表students. ...
- 详解go语言的array和slice 【一】
本篇会详细讲解go语言中的array和slice,和平时开发中使用他样时需要注意的地方,以免入坑. Go语言中array是一组定长的同类型数据集合,并且是连续分配内存空间的. 声明一个数组 var a ...
- 多线程:多线程设计模式(二):Future模式
一.什么是Future模型: 该模型是将异步请求和代理模式联合的模型产物.类似商品订单模型.见下图: 客户端发送一个长时间的请求,服务端不需等待该数据处理完成便立即返回一个伪造的代理数据(相当于商品订 ...