题意

在区间[0,50000]上有一些整点,并且满足n个约束条件:在区间[ui, vi]上至少有ci个整点,问区间[0, 50000]上至少要有几个整点。

思路

差分约束求最小值。把不等式都转换为>=形式,那么显然有xvi >= xui-1 + ci,那么就在约束图中连一条(ui-1, vi, ci)的边;当然不要忘记隐含的不等式:xi >= xi-1 + 0;   xi-1 >= xi -1.

建完图后SPFA求最长路径即可

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <queue>
#include <cstring>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m)   for (int i = begin; i < begin+m; i ++)
using namespace std;

const int MAXN = 50005;
const int oo = 0x3fffffff;
struct Edge{
    int to;
    int w;
    Edge(){}
    Edge(int _to, int _w){  to = _to;   w = _w; }
};
struct Gragh{
    vector <Edge> adj[MAXN];
    queue <int> q;
    int vn;
    int dist[MAXN], inq_num[MAXN];
    bool inq[MAXN];
    void init(int n){
        vn = n;
        for (int i = 0; i <= n; i ++)
            adj[i].clear();
    }
    //if xj >= xi + c, add (i, j, c)
    void add_edge(int u, int v, int w){
        adj[u].push_back(Edge(v, w));
    }
    //spfa calculate longest path
    bool solve(int s, int t){
        while(!q.empty())
            q.pop();
        MEM(inq, false);    MEM(inq_num, 0);    MEM(dist, -1);      //Note : dist shouldn't initially be 0
        dist[s] = 0;    inq[s] = true;  inq_num[s] ++;  q.push(s);
        while(!q.empty()){
            int u = q.front();
            q.pop();
            inq[u] = false;
            for (int i = 0; i < adj[u].size(); i ++){
                int v = adj[u][i].to;
                if (dist[v] < dist[u] + adj[u][i].w){
                    dist[v] = dist[u] + adj[u][i].w;
                    if (!inq[v]){
                        inq[v] = true;
                        inq_num[v] ++;
                        if (inq_num[v] > vn)
                            return false;
                        q.push(v);
                    }
                }
            }
        }
        if (dist[t] < oo){
            return true;
        }
    }
}spfa;
struct intervals{
    int u, v, w;
}inte[MAXN];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
    int n;
    while(scanf("%d", &n) != EOF){
        int maxn = 0;
        REP(i, 1, n){
            scanf("%d %d %d", &inte[i].u, &inte[i].v, &inte[i].w);
            inte[i].u ++, inte[i].v ++;
            maxn = max(maxn, inte[i].v);
        }
        spfa.init(maxn+1);
        REP(i, 1, maxn){
            spfa.add_edge(i-1, i, 0);
            spfa.add_edge(i, i-1, -1);
        }
        REP(i, 1, n){
            spfa.add_edge(inte[i].u-1, inte[i].v, inte[i].w);
        }
        if (spfa.solve(0, maxn)){
            printf("%d\n", spfa.dist[maxn]);
        }
    }
return 0;
}
[/cpp]

POJ 1201 Intervals (差分约束系统)的更多相关文章

  1. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  2. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  3. PKU 1201 Intervals(差分约束系统+Spfa)

    题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...

  4. poj 1201 Intervals(差分约束)

    做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...

  5. POJ 1201 Intervals(图论-差分约束)

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20779   Accepted: 7863 Descri ...

  6. POJ 1201 Intervals(差分约束 区间约束模版)

    关于差分约束详情可阅读:http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html 题意: 给定n个区间[L,R], 每个区间至 ...

  7. POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束

    POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...

  8. poj 1201 Intervals 解题报告

    Intervals Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Submit Statu ...

  9. Intervals(差分约束系统)

    http://poj.org/problem?id=1201 题意:给定n个整数闭区间[a,b]和n个整数c,求一个最小的整数集合Z,满足Z里边的数中范围在闭区间[a,b]的个数不小于c个. 思路:根 ...

随机推荐

  1. javascript利用拷贝的方法实现导出excel(可以导出表格线)

    Js代码: <script language=javascript> function preview() { window.clipboardData.setData("Tex ...

  2. root 授权

    错误:The user specified as a definer ('root'@'%') does not exist 解决: grant all privileges on *.* to ro ...

  3. C#遍历打印机

    #region 获取本机默认打印机名称 ArrayList al1=new ArrayLIst(); private static PrintDocument fPrintDocument = new ...

  4. lintcode:Pow(x, n)

    Pow(x, n) Implement pow(x, n). 解题 直接顺序求解,时间复杂度O(N) public class Solution { /** * @param x the base n ...

  5. Linux下find一次查找多个指定类型文件,指定文件或者排除某类文件,在 GREP 中匹配多个关键 批量修改文件名等

    http://blog.sina.com.cn/s/blog_62e7fe670101dg9d.html linux下二进制文件查找: strings 0000.ts | grep -o " ...

  6. haproxy.cfg

    # this config needs haproxy-1.1.28 or haproxy-1.2.1 global log 127.0.0.1 local0 log 127.0.0.1 local1 ...

  7. VCC、VDD、VEE、VSS等有关电源标注的区别

    Almost all integrated circuits (ICs) have at least two pins which connect to the power rails of the ...

  8. Axure 注册码

    用户名:axureuser 序列号:8wFfIX7a8hHq6yAy6T8zCz5R0NBKeVxo9IKu+kgKh79FL6IyPD6lK7G6+tqEV4LG

  9. MSBuild和Jenkins搭建持续集成环境

    http://www.2cto.com/os/201409/334323.html http://my.oschina.net/anxuyong/blog/353897 http://www.cnbl ...

  10. SQL Server 联表字段合并查询

    经常遇到统计报表中,子表记录合并为一个字段的情况.例如:省表中各省经济水平前五的城市统计. 有如下两表:dbo.省 和 dbo.市 (好吧,你可能会吐槽为什么用中文表名,其实我是为了方便查找替换) 这 ...