(六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线。比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN。
如下是一个单层网络的示意图,类似于感知机分类器,下图有三个feature,有一个bias unit,其值始终为1,对应的参数为ϴ0 ϴ1 ϴ2 ϴ3,最后其线性组合做一个sigmod映射来得到最终的结果
下图为含有隐藏层的Neurons Networds,ai(j)中的j表示层数,i表示第 i 个unit,ϴ(j)示层j到j+1的参数矩阵ϴij表示前一层的单元j到本层单元i的参数,本示例中ϴ(1)为3*4的矩阵
更简洁的表示方法,把上一层的输入表示为z(i), 下图中的z(2) 分别表示上一层的activation,这三个值乘以对应的参数,然后做一个sigmod映射之后又可以当下一层的输入,最终我们的Hϴ(x)=g(ϴ(2)*a(2)),可见最后我们不是对初始特征x1 x2 x3做的运算,这可以理解为 Neurons Networks会自动组合特征,从而达到更好的效果。
最后只得注意的是,对于非线性可分的情况,NN也可以进行分类,比如XOR(异或)的情况:
参考:
Ng 2012 公开课课件
(六) 6.1 Neurons Networks Representation的更多相关文章
- CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- (六) 6.3 Neurons Networks Gradient Checking
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...
- (六)6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- Machine Learning - 第4周(Neural Networks: Representation)
Neural networks is a model inspired by how the brain works. It is widely used today in many applicat ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (六)6.15 Neurons Networks Deep Belief Networks
Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...
- (六)6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
随机推荐
- GCD初步认识
//(1)用异步函数往并发队列中添加任务, //总结:同时开启三个子线程 - (void)test1 { //1.获得全局的并发队列 dispatch_queue_t queue = dispatch ...
- 知问前端——概述及jQuery UI
知问系统,是一个问答系统.主要功能:即会员提出问题,会员回答问题.目前比较热门的此类网站有:知乎http://www.zhihu.com.百度知道http://zhidao.baidu.com等.这里 ...
- 使用git整体流程
一.git提交代码走meger请求的整体流程 工作中使用git推代码时,如果走merge请求,那么也就是说拉代码时拉公共代码库的代码,但是提交时需要先提交到自己的代码库,然后在gitlab上提交mer ...
- 连接池和 "Timeout expired"异常【转】
异常信息: MySql.Data.MySqlClient.MySqlException (0x80004005): error connecting: Timeout expired. The tim ...
- Linux下TOmcat调试命令
1.显示linux系统的环境变量:env命令,会显示JAVA_HOME,Catalina,CLASSPATH等系统变量 2.
- Spring框架学习之第9节
aop编程 aop(aspect oriented programming)面向切面(方面)编程,是所有对象或者是一类对象编程,核心是(在不增加代码的基础上,还增加新功能) 汇编(伪机器指令 mov ...
- Spring框架学习之第5节
request session global-session 三个在web开发中才有意义 如果配置成prototype有点类似于request 如果配置成singleton有点类似于web开发中的gl ...
- 老是出现dispolse 找不到合适的方法来重写
复制到输出目录:不复制 生成操作:编译
- iOS开发——技术精华Swift篇&Swift 2.0和Objective-C2.0混编之第三方框架的使用
swift 语言是苹果公司在2014年的WWDC大会上发布的全新的编程语言.Swift语言继承了C语言以及Objective-C的特性,且克服了C语言的兼容性问题.Swift语言采用安全编程模式,且引 ...
- Fragment 的用法小技巧
public static class ArrayListFragment extends ListFragment { int mNum; /** * Create a new instance o ...