七、(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\),  \(A^{-1}BA\) 均为对角阵的充分必要条件是 \(A=P_1P_2\cdots P_r\), 其中 \(P_i\) 均为第一类初等阵 (即对换 \(I_n\) 的某两行) 或第二类初等阵 (即非零常数乘以 \(I_n\) 的某一行).

证明  充分性通过简单验证即可证明. 现证必要性, 设 \(A=(a_{ij})_{n\times n}\), 取 \(B=\mathrm{diag}\{1,2,\cdots,n\}\), 设 \(A^{-1}BA=C=\mathrm{diag}\{d_1,d_2,\cdots,d_n\}\). 由 \(BA=AC\) 知对任意的 \(i,j\) 成立: \[ia_{ij}=d_ja_{ij}.\]

因为 \(A\) 的每个列向量均非零, 故对任意的 \(1\leq j\leq n\), 存在某个行指标 \(i_j\) 使得 \(a_{i_j j}\neq 0\). 由上述条件可得 \[d_j=i_j,\,\,\forall\,1\leq j\leq n.\]

再次带入上述条件可得\[a_{ij}=0,\,\,\forall\,i\neq i_j,\,1\leq j\leq n.\]

由 \(A\) 的非异性知 \(A\) 的列向量线性无关, 从而 \(i_1,i_2,\cdots,i_n\) 是 \(1,2,\cdots,n\) 的全排列, 故通过若干次行对换可将 \(A\) 变为对角阵且主对角线上元素非零; 再通过若干次第二类初等行变换可将矩阵变为单位阵 \(I_n\), 故 \(A\) 是第一类初等阵和第二类初等阵的乘积.  \(\Box\)

复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答的更多相关文章

  1. 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...

  2. 复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充 ...

  3. 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...

  4. 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答

    八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...

  5. 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...

  6. 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答

    八.(本题10分)  设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...

  7. 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答

    六.(本题10分)  设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...

  8. 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...

  9. 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答

    六.(本题10分)   设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明  由 $A$ 是幂零阵可知, $A$ ...

随机推荐

  1. Linux内核之旅 List_entry()

    #include "iostream" #define List_entry(type,member)\ (type *)(()->data)) ) using namesp ...

  2. 夺命雷公狗ThinkPHP项目之----企业网站12之文章添加的实现

    我们现在就开始写文章添加了,居然是添加当然布列外,我们还是要先讲模版搞定再说被: <!doctype html> <html> <head> <meta ch ...

  3. lower power的IP设计

    在IP的实现过程中,考虑lower power部分进行设计: 1)Partition the design来满足lower power的一些strategies,尤其是power gating和clo ...

  4. 静态关键字static

    //静态关键字的使用static //类里面的普通成员是属于对象的,不是属于类的(调用的时候是用对象调用) //什么叫做静态的:类静态成员是属于类的,不是属于每个对象的 //定义静态成员用static ...

  5. B2C电子商务网站技术框架

    一 设计原则 电子商务平台总体结构的设计应从体系.功能.信息.过程等各个方面保证整个电子商务平台总体目标的实现,以提高市场竞争能力.总体结构的设计应考虑以下设计原则: 快速响应原则:商机稍纵即逝,网站 ...

  6. EF数据库连接时候出错

    users: EntityType: EntitySet 'users' is based on type 'UserModel' that has no keys defined. TreeLaye ...

  7. 获取元素CSS值之getComputedStyle方法熟悉

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2378 一.碎碎念~前 ...

  8. vm克隆虚拟机网络配置

    *CentOS虚拟机网络连接方式为:桥接模式* 虚拟机克隆后会导致网络连接不上:(引起原因是新的MAC和网卡配置对应不上)问题解决(在克隆机里执行下列步骤): vi /etc/udev/rules.d ...

  9. weblogic安装失败

    weblogic无法安装所选应用程序 Exception in AppMerge flows' progression Exception in AppMerge flows' progression ...

  10. ECshop中defined('IN_ECS')的实现原理

    在PHP中经常看到如下代码   if (!defined('IN_ECS'))   {       die('Hacking attempt');   }   实现的原因以及原理如下:     ecs ...