复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答
七、(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\), \(A^{-1}BA\) 均为对角阵的充分必要条件是 \(A=P_1P_2\cdots P_r\), 其中 \(P_i\) 均为第一类初等阵 (即对换 \(I_n\) 的某两行) 或第二类初等阵 (即非零常数乘以 \(I_n\) 的某一行).
证明 充分性通过简单验证即可证明. 现证必要性, 设 \(A=(a_{ij})_{n\times n}\), 取 \(B=\mathrm{diag}\{1,2,\cdots,n\}\), 设 \(A^{-1}BA=C=\mathrm{diag}\{d_1,d_2,\cdots,d_n\}\). 由 \(BA=AC\) 知对任意的 \(i,j\) 成立: \[ia_{ij}=d_ja_{ij}.\]
因为 \(A\) 的每个列向量均非零, 故对任意的 \(1\leq j\leq n\), 存在某个行指标 \(i_j\) 使得 \(a_{i_j j}\neq 0\). 由上述条件可得 \[d_j=i_j,\,\,\forall\,1\leq j\leq n.\]
再次带入上述条件可得\[a_{ij}=0,\,\,\forall\,i\neq i_j,\,1\leq j\leq n.\]
由 \(A\) 的非异性知 \(A\) 的列向量线性无关, 从而 \(i_1,i_2,\cdots,i_n\) 是 \(1,2,\cdots,n\) 的全排列, 故通过若干次行对换可将 \(A\) 变为对角阵且主对角线上元素非零; 再通过若干次第二类初等行变换可将矩阵变为单位阵 \(I_n\), 故 \(A\) 是第一类初等阵和第二类初等阵的乘积. \(\Box\)
复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答的更多相关文章
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...
- 复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充 ...
- 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答
七.(本题10分) 设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...
- 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答
八.(本题10分) 设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...
- 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答
六.(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
- 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明 由 $A$ 是幂零阵可知, $A$ ...
随机推荐
- 使用console进行 性能测试 和 计算代码运行时间(转载)
本文转载自: 使用console进行 性能测试 和 计算代码运行时间
- 夺命雷公狗TP下关联查询
记录下我们常用的关联查询: public function add4(){ $id=$_GET['id']; $this->list = M("student")->t ...
- 4. 星际争霸之php设计模式--工厂方法模式
题记==============================================================================本php设计模式专辑来源于博客(jymo ...
- windows下快速启动 nginx 和 php-cgi 的两个批处理
这是启动的批处理: set nginx=D:\nginx-1.9.5\ set php=D:\php\ start /MIN %nginx%nginx.exe start /MIN %php%php- ...
- DB2 表空间和缓冲池
简介 对于刚涉足 DB2 领域的 DBA 或未来的 DBA 而言,新数据库的设计和性能选择可能会很令人困惑.在本文中,我们将讨论 DBA 要做出重要选择的两个方面:表空间和缓冲池.表空间和缓冲池的设计 ...
- 视频处理控件TVideoGrabber部分技术问题解答
TVideoGrabber是一个功能全面.易于使用的视频捕捉工具和多媒体播放器,本文搜集了一些TVideoGrabber的技术问答,并针对于有的朋友遇到的疑难给出了解答. 一.在TVideoGrabb ...
- Mongodb 笔记06 副本集的组成、从应用程序连接副本集、管理
副本集的组成 1. 同步:MongoDB的复制功能是使用操作日志oplog实现的,操作日志包含了主节点的每一次写操作.oplog是主节点的local数据库中的一个固定集合.备份节点通过查询整个集合就可 ...
- Xcode运行的错误bug收集
libopencore-amrnb.a(wrapper.o)' does not contain bitcode. You must rebuild it with bitcode enabled ( ...
- 使用PHP flush 函数的时候我们需要注意些什么呢?
WebServer(可以认为特指apache)的缓冲区.在apache module的sapi下, flush会通过调用sapi_module的flush成员函数指针,间接的调用apache的api: ...
- Ecshop后台订单列表增加”商品名”检索字段
近期ecshop网站做活动,统计商品订单量的时候没有按商品名搜索的选项,只能手动查询.这样效率很低下,而且容易出错. 现在为列表增加一个简单的“按商品名搜索”表单项.效果如下图 涉及到2个文件,分别是 ...