题目链接:http://codeforces.com/contest/543/problem/D

给你一棵树,初始所有的边都是坏的,要你修复若干边。指定一个root,所有的点到root最多只有一个坏边。以每个点为root,问分别有多少种方案数。

dp[i]表示以i为子树的root的情况数,不考虑父节点,考虑子节点。   dp[i] = dp[i] * (dp[i->son] + 1)

up[i]表示以i为子树的root的情况数(倒着的),考虑父节点,不考虑子节点。  这里需要逆元。 注意(a/b)%mod中b%mod=0是错误的,所以要特殊判断。

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 2e5 + ;
LL dp[N], mod = 1e9 + , up[N];
vector <int> edge[N];
int cnt[N]; //子树(dp[i->son] + 1)%mod != 0的节点数
LL fuck[N]; //子树(dp[i-son] + 1)%mod != 0的方案数相乘 LL fpow(LL a, LL n) {
LL res = ;
while(n) {
if(n & )
res = res * a % mod;
a = a * a % mod;
n >>= ;
}
return res;
} void dfs1(int u, int p) {
dp[u] = ;
fuck[u] = ;
for(int i = ; i < edge[u].size(); ++i) {
int v = edge[u][i];
if(v == p)
continue;
dfs1(v, u);
if(dp[v] + == mod)
cnt[u]++;
else
fuck[u] = ( + dp[v]) % mod * fuck[u] % mod;
dp[u] = ( + dp[v]) % mod * dp[u] % mod;
}
} void dfs2(int u, int p) {
for(int i = ; i < edge[u].size(); ++i) {
int v = edge[u][i];
if(v == p)
continue;
//LL temp = dp[u] * fpow((dp[v] + 1) % mod, mod - 2) % mod; //error
LL temp = ;
if(dp[v] + == mod && up[u] && cnt[u] == ) { //特殊情况
temp = fuck[u];
} else {
temp = dp[u] * fpow((dp[v] + ) % mod, mod - ) % mod;
}
up[v] = (up[u] * temp % mod + ) % mod;
dfs2(v, u);
}
} int main()
{
int n, u;
scanf("%d", &n);
for(int i = ; i <= n; ++i) {
scanf("%d", &u);
edge[i].push_back(u);
edge[u].push_back(i);
}
dfs1(, -);
up[] = ;
dfs2(, -);
for(int i = ; i <= n; ++i) {
printf("%lld%c", dp[i]*up[i]%mod, i == n ? '\n': ' ');
}
return ;
}

Codeforces 543D. Road Improvement (树dp + 乘法逆元)的更多相关文章

  1. Codeforces 543D Road Improvement(DP)

    题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...

  2. Codeforces 543D Road Improvement(树形DP + 乘法逆元)

    题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...

  3. Codeforces 543D Road Improvement

    http://codeforces.com/contest/543/problem/D 题意: 给定n个点的树 问: 一开始全是黑边,对于以i为根时,把树边白染色,使得任意点走到根的路径上不超过一条黑 ...

  4. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  5. Codeforces Round #302 (Div. 1) D - Road Improvement 树形dp

    D - Road Improvemen 思路:0没有逆元!!!! 不能直接除,要求前缀积和后缀积!!! #include<bits/stdc++.h> #define LL long lo ...

  6. Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)

    题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...

  7. Codeforces 1332F - Independent Set(树dp)

    题目链接 题意 给出一棵 n 个点的树, 求它的所有非空诱导子图的独立集种类数之和, 对 998244353 取模. n ≤ 3e5. 题解 不妨假设在独立集中的点被染色成 1, 其余不染色; 由于不 ...

  8. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  9. (纪念第一道完全自己想的树DP)CodeForces 219D Choosing Capital for Treeland

    Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes inpu ...

随机推荐

  1. 【转载】Mysql binlog relaylog 日志迁移

    背景:   默认情况下,mysql的数据.binlog.relaylog都是保存在同一个磁盘上,路径根据每个人的设置不一. 当mysql数据库中数据或日志增长很快时,磁盘可能面临空间不够或者IO性能跟 ...

  2. BZOJ 1589 采集糖果

    23333怎么调了一晚上.... #include<iostream> #include<cstdio> #include<cstring> #include< ...

  3. 文件IO

    在unix世界中视一切为文件,无论最基本的文本文件还是网络设备或是u盘,在内核看来它们的本质都是一样的.大多数文件IO操作只需要用到5个函数:open . read . write . lseek 以 ...

  4. HDU 4627 The Unsolvable Problem 2013 Multi-University Training Contest 3

    给你一个数 n ( 2 <= n <= 109 ),现在需要你找到一对数a, b (a + b = n),并且使得LCM(a, b)尽可能的大,然后输出最大的 LCM(a, b). (为什 ...

  5. Android 实现切换主题皮肤功能(类似于众多app中的 夜间模式,主题包等)

    首先来个最简单的一键切换主题功能,就做个白天和晚上的主题好了. 先看我们的styles文件: <resources> <!-- Base application theme. --& ...

  6. 嵌入式 busybox自带的tftp、telnet、ftp服务器

    a.tftp server服务器配置与使用 方法1: #udpsvd -vE 069 tftpd -c /root& //上面的0表示对所有ip地址都进行侦听 方法2: #vi/etc/ine ...

  7. Python函数练习:冒泡算法+快速排序(二分法)

    冒泡算法: #-*- coding: UTF-8 -*-#冒泡排序 def func(lt):if type(lt).__name__ !='list' and type(lt).__name__ ! ...

  8. Linux基本命令(9)定位、查找文件的命令

    定位.查找文件的命令 命令 功能 命令 功能 which 从path中找出文件的位置 find 找出所有符合要求的文件 whereis 找出特定程序的路径 locate 从索引中找出文件位置 9.1 ...

  9. LR录制脚本IE不能打开解决方法

    运行环境:win7 64位 解决方法:1.卸载IE11 2.计算机——属性——高级系统设置——性能里的设置——数据执行保护——选择“为除下列选定程序之外的所有程序和服务启用”——添加IE浏览器和VUG ...

  10. 操作符重载.xml

    pre{ line-height:1; color:#1e1e1e; background-color:#d2d2d2; font-size:16px;}.sysFunc{color:#627cf6; ...