实际上就是问这个区间编号连续的段的个数,假如一个编号连续的段有(a+b)个人,我把他们分在同一组能得到的分值为(a+b)^2,而把他们分成人数为a和b的两组的话,得到的分值就是a^2+b^2,显然(a+b)^2 > a^2+b^2,所以对于每个区间,尽可能把他们分成尽量少的组。

考虑把这些数从后往前添加,每添加一个数num[i],如果num[i]+1或者num[i]-1有且只有一个已经存在,则段数不变;如果num[i]+1和num[i]-1同时存在,则段数-1,如果都不在,则段数+1。

对于每个数num[i],我们记录把它添加进去的时候,它对段数产生的影响为c[i]( 即插入num[i]时对区间[i, N]的段数产生的影响 ),查询就是求c[i]的区间和。

对于询问我们做离线处理,把每个询问按右端点从大到小排序,从后往前扫描,每次把询问右端点之外的数删掉,根据其是否会产生影响对c[i]进行更新。

Sum( Query[i].r ) - Sum( Query[i].l - 1 ) 即为答案。

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> using namespace std; const int MAXN = ; struct node
{
int l, r, id;
}; int N, Q;
node qry[MAXN]; //查询
int C[MAXN]; //树状数组
int num[MAXN]; //原数组
int addr[MAXN]; //每个数在哪个位置
int ans[MAXN]; //记录答案
bool use[MAXN]; //该数是否存在 bool cmp( node a, node b )
{
return a.r > b.r;
} int lowbit( int x )
{
return x & (-x);
} int Query( int x )
{
int res = ;
while ( x > )
{
res += C[x];
x -= lowbit(x);
}
return res;
} void Update( int x, int val )
{
while ( x <= N )
{
C[x] += val;
x += lowbit(x);
}
return;
} void init()
{
memset( C, , sizeof(C) );
memset( use, false, sizeof(use) ); for ( int i = N; i > ; --i )
{
if ( use[ num[i] - ] && use[ num[i] + ] )
{
Update( i, - );
}
else if ( !( use[ num[i] - ] || use[ num[i] + ] ) )
{
Update( i, );
}
use[ num[i] ] = true;
}
return;
} void solved()
{
int j = N;
for ( int i = ; i < Q; ++i )
{
while ( j > 0 && j > qry[i].r )
{
if ( num[j] > && addr[ num[j] - ] < j )
{
Update( addr[ num[j] - ], );
}
if ( num[j] < N && addr[ num[j] + ] < j )
{
Update( addr[ num[j] + ], );
}
--j;
}
ans[ qry[i].id ] = Query( qry[i].r ) - Query( qry[i].l - );
} for ( int i = ; i < Q; ++i )
printf( "%d\n", ans[i] ); return;
} int main()
{
int T;
scanf( "%d", &T );
while ( T-- )
{
scanf( "%d%d", &N, &Q );
for ( int i = ; i <= N; ++i )
{
scanf( "%d", &num[i] );
addr[ num[i] ] = i;
}
for ( int i = ; i < Q; ++i )
{
scanf("%d%d", &qry[i].l, &qry[i].r );
qry[i].id = i;
}
sort( qry, qry + Q, cmp ); init();
solved();
}
return ;
}

HDU 4638 Group 树状数组 + 思路的更多相关文章

  1. HDU 4638 Group ★(树状数组)

    题意 询问一段区间里的数能组成多少段连续的数. 思路 先考虑从左往右一个数一个数添加,考虑当前添加了i - 1个数的答案是x,那么可以看出添加完i个数后的答案是根据a[i]-1和a[i]+1是否已经添 ...

  2. 区间的关系的计数 HDU 4638 离线+树状数组

    题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...

  3. HDU 4358 Boring counting 树状数组+思路

    研究了整整一天orz……直接上官方题解神思路 #include <cstdio> #include <cstring> #include <cstdlib> #in ...

  4. HDU 2838 (DP+树状数组维护带权排序)

    Reference: http://blog.csdn.net/me4546/article/details/6333225 题目链接: http://acm.hdu.edu.cn/showprobl ...

  5. HDU 2689Sort it 树状数组 逆序对

    Sort it Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  6. poj 2985 The k-th Largest Group 树状数组求第K大

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8353   Accepted ...

  7. hdu4638 group 树状数组

    连接:http://acm.hdu.edu.cn/showproblem.php?pid=4638 题意:就给给你n个数(大小在1-n里),然后给你连续的可以构成一个块,再给你N个询问,每个询问一个l ...

  8. POJ 2352 &amp;&amp; HDU 1541 Stars (树状数组)

    一開始想,总感觉是DP,但是最后什么都没想到.还暴力的交了一发. 然后開始写线段树,结果超时.感觉自己线段树的写法有问题.改天再写.先把树状数组的写法贴出来吧. ~~~~~~~~~~~~~~~~~~~ ...

  9. hdu 4031(树状数组+辅助数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Attack Time Limit: 5000/3000 MS (Java/Others)    ...

随机推荐

  1. Careercup - Google面试题 - 6271724635029504

    2014-05-06 13:23 题目链接 原题: Finding a pair of elements from two sorted lists(or array) for which the s ...

  2. VSTO Word2003 添加菜单栏, 添加工具栏

    直接上代码了:   Microsoft.Office.Core.CommandBar menuBar; CommandBarButton ccbtn = null;        CommandBar ...

  3. Python中__init__方法/__name__系统变量讲解

    __init__方法在类的一个对象被建立时,马上运行.这个方法可以用来对你的对象做一些你希望的初始化. 代码例子 test.py#!/usr/bin/python# Filename: class_i ...

  4. 威胁远胜“心脏出血”?国外新爆Bash高危安全漏洞

    这几天Linux用户们可能不能愉快地玩耍了,红帽(Redhat)安全团队昨天爆出一个危险的Bash Shell漏洞.其带来的威胁可能比早前披露的“心脏出血”漏洞更大更强! [OpenSSL心脏出血漏洞 ...

  5. 大漠推荐的教程:创建你自己的AngularJS -- 第一部分 Scopes

    创建你自己的AngularJS -- 第一部分 Scopes http://www.html-js.com/article/1863

  6. Codis集群的搭建与使用

    一.简介 Codis是一个分布式的Redis解决方案,对于上层的应用来说,连接Codis Proxy和连接原生的Redis Server没有明显的区别(不支持的命令列表),上层应用可以像使用单机的Re ...

  7. ubuntu修改ip、网关、dns等

    一.使用命令设置Ubuntu IP地址 1.修改配置文件blacklist.conf禁用IPV6 sudo vi /etc/modprobe.d/blacklist.conf 表示用vi编辑器(也可以 ...

  8. MFC单文档程序结构

    MFC单文档程序结构三方面: Doc MainFrame View

  9. JavaScript语言基础知识点图示(转)

    一位牛人归纳的JavaScript 语言基础知识点图示. 1.JavaScript 数据类型 2.JavaScript 变量 3.Javascript 运算符 4.JavaScript 数组 5.Ja ...

  10. javascript利用拷贝的方法实现导出excel(可以导出表格线)

    Js代码: <script language=javascript> function preview() { window.clipboardData.setData("Tex ...