点击打开链接

Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 43490   Accepted: 9640

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the
sea can be covered by a radius installation, if the distance between them is at most d. 



We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write
a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 

 

Figure A Sample Input of Radar Installations



Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing
two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 



The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

题目大意就是在X轴上的点是雷达,要用最少的雷达覆盖x轴上部的点(小岛),输入小岛的个数,雷达半径和小岛的坐标,问最少需要多少雷达才能全部覆盖这些小岛

思路1:

我们反过来考虑问题,以每个小岛为圆心,雷达的覆盖范围为半径做一个圆,圆和x轴有一个或者两个交点,那么说明至少在两个交点范围内设置一个雷达才能覆盖到这个小岛,我们可以把两个交点标记为起点和终点,那么对于所有的小岛,都有一个起点和一个终点,然后我们先把这些点按起点排序,选定第一个起点和这个点对应的终点,终点设为E,然后向后选择,如果一个点的起点小于E,而且终点也小于E,那么要把E改写为当前这个点的终点;如果当前点的终点大于E,则不用修改。如果当前点的起点大于E,那么说明需要新建一个雷达以覆盖这个点,计数器加以,终点E重新设置为当前这个点的终点。

#include<stdio.h>
#include<utility>
#include<vector>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
int num;
// freopen("test.txt", "r", stdin);
vector<pair<double, double> > v;
for(num = 1; ; num ++)
{
int n, m;
bool f = 0;
scanf("%d %d", &n, &m);
if(n == m && m == 0)
break;
int x, y;
pair<double, double> p;
double dis;
while(n--)
{
scanf("%d %d", &x, &y);
if(y > m)
{
f= 1;
}
dis = sqrt(m * m - y * y);
p.first= x - dis;
p.second = x + dis;
v.push_back(p);
}
if(f == 1)
{
printf("Case %d: -1\n", num);
v.clear();
continue;
}
sort(v.begin(), v.end());
vector<pair<double, double> > ::iterator i;
double tail = v[0].second;
int count = 1;
for(i = v.begin() + 1; i != v.end(); i++)
{
double max = tail;
bool flag = 0;
for(; (*i).first <= tail && i != v.end() ; i++)
{
flag = 1;
if((*i).second < tail)
tail = (*i).second;
}
if(i == v.end())
break; tail = (*i).second;
count ++; }
printf("Case %d: %d\n", num , count);
v.clear();
}
return 0;
}

思路2:今天重新看这个题发现思路1挺乱的,有更简单的思考方式:

以每个小岛为圆心,雷达的覆盖范围为半径做一个圆,圆和x轴有一个或者两个交点,那么说明至少在两个交点范围内设置一个雷达才能覆盖到这个小岛。我们可以把两个交点标记为起点和终点。这样我们就能算出start和end在x轴上的坐标。(这里同思路1)

不同点是:

转换一下题目的描述:

雷达越少越好 == 每个雷达覆盖的小岛数越多越好。

假设我们从左向右安装。

那么选择第一个点的时候第一个end的位置,就是在既能覆盖住第一个点,又能尽量向后覆盖的最后一个位置,这样就能保证覆盖住这个点的同时向后的覆盖面最大。覆盖面更大就更有可能覆盖住后面的点(因为还没有遍历到后面的点,所以后面的点还是未知的),从而实现雷达覆盖的小岛数越多越好这一目标

代码是在思路1的基础上改的,思路1是pair的first是start,second是end,思路二中两个变量换一下(pair自带的排序是先比较第一个)这样就能按end排序了,然后思路就是上面的了:

#include<stdio.h>
#include<utility>
#include<vector>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
int num;
vector<pair<double, double> > v;
for(num = 1; ; num ++)
{
int n, m;
bool f = 0;
scanf("%d %d", &n, &m);
if(n == m && m == 0)
break;
int x, y;
pair<double, double> p;
double dis;
while(n--)
{
scanf("%d %d", &x, &y);
if(y > m)
{
f= 1;
}
dis = sqrt(m * m * 1.0 - y * y);
p.second= x - dis;
p.first = x + dis;
v.push_back(p);
}
if(f == 1)
{
printf("Case %d: -1\n", num);
v.clear();
continue;
}
sort(v.begin(), v.end());
vector<pair<double, double> > ::iterator i;
double tail = v[0].first;
int count = 1;
for(i = v.begin() + 1; i != v.end(); i++)
{
if((*i).second > tail)
{
count ++;
tail = (*i).first;
}
}
printf("Case %d: %d\n", num , count);
v.clear();
}
return 0;
}

poj 1328 Radar Installation(nyoj 287 Radar):贪心的更多相关文章

  1. 贪心问题:区间覆盖 POJ 1328 Rader Installation

    题目:http://poj.org/problem?id=1328 题意:给定海岛个数,雷达半径,输入各个海岛坐标,求能覆盖所有海岛的最少雷达数 题解: 1. 贪心的区间覆盖问题,尽量让每个雷达覆盖更 ...

  2. 贪心 POJ 1328 Radar Installation

    题目地址:http://poj.org/problem?id=1328 /* 贪心 (转载)题意:有一条海岸线,在海岸线上方是大海,海中有一些岛屿, 这些岛的位置已知,海岸线上有雷达,雷达的覆盖半径知 ...

  3. poj 1328 Radar Installation (简单的贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42925   Accepted: 94 ...

  4. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  5. poj 1328 Radar Installation(贪心)

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  6. POJ 1328 Radar Installation 【贪心 区间选点】

    解题思路:给出n个岛屿,n个岛屿的坐标分别为(a1,b1),(a2,b2)-----(an,bn),雷达的覆盖半径为r 求所有的岛屿都被覆盖所需要的最少的雷达数目. 首先将岛屿坐标进行处理,因为雷达的 ...

  7. poj 1328 Radar Installation【贪心区间选点】

    Radar Installation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) ...

  8. Radar Installation(POJ 1328 区间贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68578   Accepted: 15 ...

  9. Radar Installation POJ - 1328(贪心)

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. ...

随机推荐

  1. diamond operator is not supported in -source 1.5

    在mvn install编译的时候出现了,错误 diamond operator is not supported in -source 1.5 的错误信息: 解决方法:在pom.xml文件里面添加: ...

  2. LinkedHashMap和HashMap区别

    import java.util.HashMap; import java.util.Iterator; import java.util.LinkedHashMap; import java.uti ...

  3. of

    “查询序列的一个元素” 1. an element of the query sequence (T) 2. an query sequence element (T) "查询序列或者候选序 ...

  4. redis客户端jedis连接和spring结合

    摘自传智博客课程 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="htt ...

  5. php提高效率

    1. foreach效率更高,尽量用foreach代替while和for循环. 2. 循环内部不要声明变量,尤其是对象这样的变量. 3. 在多重嵌套循环中,如有可能,应当将最长的循环放在内层,最短循环 ...

  6. linux脚本后台运行

    一般情况下,linux运行脚本是随着终端的关闭而关闭的,那么怎么让脚本能够在后台运行并且不随终端关闭而关闭呢? 这时用到的是nohup命令 格式: nohup 脚本路径 & 例: nohup ...

  7. android学习笔记32——资源

    Android应用资源 资源分类: 1.无法直接访问的原生资源,保存于asset目录下 2.可通过R资源清单类访问的资源,保存于res目录下 资源的类型以及存储方式 android要求在res目录下用 ...

  8. 程序包com.sun.image.codec.jpeg不存在 问题的完美解决

    原文地址:http://my.oschina.net/zb0423/blog/86507 在使用Hudson进行打包的过程中,因为我们使用了一个pdf文件产生缩略图的功能,倒置添加的源码文件在mave ...

  9. 最小费用最大流 POJ2195-Going Home

    网络流相关知识参考: http://www.cnblogs.com/luweiseu/archive/2012/07/14/2591573.html 出处:優YoU http://blog.csdn. ...

  10. 使用eclipse编译调试c++

    1. 安装JDK 到官网下载最新的jdk版本,并安装 http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-18 ...