$$\bex \bbu\in L^{p,r}(0,T;L^{q,\infty}(\bbR^3)),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty,\quad 2<p<r<\infty, \eex$$ or $$\bex \sen{\bbu}_{L^{p,\infty}(0,T;L^{q,\infty}(\bbR^3))}\leq \ve,\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty,\quad 2<p<\infty, \eex$$

[Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001]的更多相关文章

  1. [Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014]

    $$\bex \bbu\in L^p(0,T;L^{q,\infty}),\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q\leq\infty. \eex$$ ...

  2. [Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011]

    $$\bex \int_0^T\frac{\sen{\bbu}_{L^{q,\infty}}^p}{\ve+\ln \sex{e+\sen{\bbu}_{L^\infty}}}\rd s<\in ...

  3. [Papers]NSE, $\pi$, Lorentz space [Suzuki, NA, 2012]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s} ...

  4. [Papers]NSE, $\pi$, Lorentz space [Suzuki, JMFM, 2012]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s} ...

  5. [Papers]MHD, $\pi$, Lorentz space [Suzuki, DCDSA, 2011]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} +\sen{{\bf b}}_{L^{\gamma,\infty}(0,T;L^{\ ...

  6. [Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]

    $$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$

  7. [Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \fra ...

  8. [Papers]NSE, $u_3$, Lebesgue space [Cao-Titi, IUMJ, 2008]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \fra ...

  9. [Papers]NSE, $u_3$, Lebesgue space [Kukavica-Ziane, Nonlinearity, 2006]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}<q ...

随机推荐

  1. Delphi是座宝山,有待挖掘

    Delphi是座宝山,有待挖掘1. VCL源码是座宝山,把纷繁复杂的Windows编程封装到短短几个类里,不超过8000行代码,还额外包括许多其它的技巧2. RTL是座宝山,方便程序员使用底层运算,不 ...

  2. Mysql Workbench 学习

    1.安装 http://dev.mysql.com/downloads/tools/workbench/ 选择合适的,下载(以Ubuntu 为例) cd到下载目录,然后sudo dpkg -i wor ...

  3. 284. Peeking Iterator

    题目: Given an Iterator class interface with methods: next() and hasNext(), design and implement a Pee ...

  4. C++调用python

    本文以实例code讲解 C++ 调用 python 的方法. 本文在util.h中实现三个函数: 1. init_log: 用google log(glog)初始化log 2. exe_command ...

  5. POJ 2689 Prime Distance (素数+两次筛选)

    题目地址:http://poj.org/problem?id=2689 题意:给你一个不超过1000000的区间L-R,要你求出区间内相邻素数差的最大最小值,输出相邻素数. AC代码: #includ ...

  6. springmvc在web.xml中的配置

    <!-- SpringMVC核心分发器 --> <servlet> <servlet-name>dispatcherServlet</servlet-name ...

  7. 《Linux/Unix系统编程手册》读书笔记7 (/proc文件的简介和运用)

    <Linux/Unix系统编程手册>读书笔记 目录 第11章 这章主要讲了关于Linux和UNIX的系统资源的限制. 关于限制都存在一个最小值,这些最小值为<limits.h> ...

  8. C语言输出当前日期和时间

    #include <stdio.h> #include <time.h> char* asctime2(const struct tm *timeptr) { static c ...

  9. matlab函数集锦

    matlab函数集锦 matlab函数集锦ISFINITE(X), ISINF(X), or ISNAN(X)pwd 当前目录eval 执行matlab函数CONV2(  ,'same')  卷积F  ...

  10. D3D中深度测试和Alpha混合的关系

    我在学习D3D的深度测试和Alpha混合的时候,有一些遗憾.书上提供的例子里说一定要先渲染不透明物体,再渲染透明物体,对渲染状态的设置也有特殊要求.我看的很晕.自己查图形学的书,上网找资料,结果还是糊 ...