题目:经过提炼后, 题目的意思就是问[2,n] 内,不是次方数的数量 ,;

思路:

答案就是

原理是利用容斥,注意n开i次根是向下取整(这题巨卡精度)

这是大神的思路 ,, 我还没有理解, 先放着,等以后在来思考 , 先当模板使用

#include <bits/stdc++.h>

#define forn(i, n) for (int i = 0; i < int(n); i++)

using namespace std;

const int K = ;
const int N = * + ;
const long long INF64 = 3e18; int mu[K]; void precalc(){
static bool prime[K];
static int lst[K]; memset(prime, false, sizeof(prime));
forn(i, K) lst[i] = i; for (int i = ; i < K; ++i){
if (lst[i] == i) mu[i] = ;
for (int j = * i; j < K; j += i){
lst[j] = min(lst[j], lst[i]);
if (lst[j] == lst[i])
mu[j] = ;
else
mu[j] = -mu[i];
}
}
} int mx[K]; long long binpow(long long a, int b){
long long res = ;
while (b){
if (b & ){
if (res < INF64 / a) res *= a;
else return INF64;
}
if (b > ){
if (a < INF64 / a) a *= a;
else return INF64;
}
b >>= ;
}
return res;
} long long calc(long long n){
int pw = - __builtin_clzll(n);
for (int i = ; i <= pw; ++i){
if (mu[i] == ) continue;
while (binpow(mx[i], i) > n)
--mx[i];
} long long res = n - ;
for (int i = ; i <= pw; ++i)
res -= mu[i] * (mx[i] - ); return res;
} int get_sqrt(long long n){
int l = , r = ;
while (l < r - ){
int m = (l + r) / ;
if (m * 1ll * m <= n)
l = m;
else
r = m;
}
return (r * 1ll * r <= n ? r : l);
} long long ans[N]; int main() {
precalc();
int T;
scanf("%d", &T);
vector<pair<long long, int> > q; forn(i, T){
long long n;
scanf("%lld", &n);
q.push_back({n, i});
} sort(q.begin(), q.end(), greater<pair<long long, int> >());
mx[] = ;
mx[] = ;
mx[] = ;
for (int i = ; i < K; ++i)
mx[i] = ; forn(z, T){
long long n = q[z].first;
mx[] = get_sqrt(n);
ans[q[z].second] = calc(n);
} forn(i, T)
printf("%I64d\n", ans[i]);
return ;
}

F. Relatively Prime Powers (求([2,n],内不是次方的数量)的更多相关文章

  1. SGU 231 Prime Sum 求&lt;=n内有多少对素数(a,b)使得a+b也为素数 规律题

    题目链接:contest=0&problem=231">点击打开链接 题意: 求<=n内有多少对素数(a,b)使得a+b也为素数 思路: 我们发现全部素数间隔都是> ...

  2. Educational Codeforces Round 50 (Rated for Div. 2) F - Relatively Prime Powers(数学+容斥)

    题目链接:http://codeforces.com/contest/1036/problem/F 题意: 题解:求在[2,n]中,x != a ^ b(b >= 2 即为gcd)的个数,那么实 ...

  3. Educational Codeforces Round 50 (Rated for Div. 2)F. Relatively Prime Powers

    实际上就是求在[2,n]中,x != a^b的个数,那么实际上就是要求x=a^b的个数,然后用总数减掉就好了. 直接开方求和显然会有重复的数.容斥搞一下,但实际上是要用到莫比乌斯函数的,另外要注意减掉 ...

  4. 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数

    求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...

  5. P1886 滑动窗口&&P1440 求m区间内的最小值

    声明:下面这两个题就不要暴力了,学一学单调队列吧 推荐博文:https://www.cnblogs.com/tham/p/8038828.html 单调队列入门题 P1440 求m区间内的最小值 题目 ...

  6. 省赛i题/求1~n内全部数对(x,y),满足最大公约数是质数的对数

    求1~n内全部数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数.最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...

  7. 洛谷 P1440 求m区间内的最小值

    传送门 思路 由于数据范围很大,所以使用单调队列,和滑动窗口这道题类似 首先第一个数输出\(0\),因为第一个数之前没有数 然后通过样例我们发现,最后一个数并没有派上什么用场,所以循环\(n-1\)轮 ...

  8. Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)

    Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...

  9. LG1440 求 m 区间内的最小值

    题目描述 一个含有 \(n\) 项的数列 (\(n≤ 2000000\)),求出每一项前的 \(m\) 个数到它这个区间内的最小值.若前面的数不足 \(m\) 项则从第 \(1\) 个数开始,若前面没 ...

随机推荐

  1. SPOJ8093Sevenk Love Oimaster(广义后缀自动机)

    Oimaster and sevenk love each other.     But recently,sevenk heard that a girl named ChuYuXun was da ...

  2. 2017-2018-1 20179215《Linux内核原理与分析》第三周作业

    本次作业分为两部分:第一部分为实验.主要目的是进行基于MYKERNEL的一个简单的时间片轮转多道程序内核代码分析.第二部分为阅读教材,了解LINUX进程调度等. 一.实验部分 实验过程如过程所述:使用 ...

  3. 1. Two Sum[LeetCode 简单 by 大志]

    1. 二数之和 题目 English Given an array of integers, return indices of the two numbers such that they add ...

  4. poj 2390 Bank Interest(计算本利和)

    一.Description Farmer John made a profit last year! He would like to invest it well but wonders how m ...

  5. 前端框架:template

    ylbtech-前端框架: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://ylbtech.cn ...

  6. sql server 2008 开启1433端口,开启远程连接

    通常情况下只需要设置两处

  7. Sublime Text3常用插件以及安装方法(实用)【转载】

    https://www.cnblogs.com/liuchaoH/p/6370008.html Package Control组件在线安装 按Ctrl+`调出console(注:避免热键冲突) 粘贴以 ...

  8. 手机连接fiddler后,浏览器无法打开网页或者fiddler抓取不到手机应用相关数据的情况

    关于手机如何连接fiddler,网上有很多教程,我暂时就不写了 今天在使用fiddler的过程中,发现fiddler突然无法抓取移动端应用的数据包,再三确认连接无误.因此就开始了解决之旅 起因是安卓手 ...

  9. 2.XML实体注入漏洞攻与防

    XML实体注入基础 当允许引用外部实体时,通过构造恶意内容,可导致读取任意文件.执行系统命令.探测内网端口.攻击内网网站等危害. 简单了解XML以后,我们知道要在XML中使用特殊字符,需要使用实体字符 ...

  10. 22. CTF综合靶机渗透(十五)

    靶机说明: Game of Thrones Hacking CTF This is a challenge-game to measure your hacking skills. Set in Ga ...