poj2115[扩展欧几里德]
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 22260 | Accepted: 6125 |
Description
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value
A and while variable is not equal to B, repeats statement followed by increasing
the variable by C. We want to know how many times does the statement get
executed for particular values of A, B and C, assuming that all arithmetics is
calculated in a k-bit unsigned integer type (with values 0 <= x <
2k) modulo 2k.
Input
is described by a single line with four integers A, B, C, k separated by a
single space. The integer k (1 <= k <= 32) is the number of bits of the
control variable of the loop and A, B, C (0 <= A, B, C < 2k)
are the parameters of the loop.
The input is finished by a line
containing four zeros.
Output
the instances on the input. The i-th line contains either the number of
executions of the statement in the i-th instance (a single integer number) or
the word FOREVER if the loop does not terminate.
Sample Input
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0
Sample Output
0
2
32766
FOREVER
Source
大致题意:
对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束。
若在有限次内结束,则输出循环次数。
否则输出死循环。
解题思路:
题意不难理解,只是利用了 k位存储系统 的数据特性进行循环。
例如int型是16位的,那么int能保存2^16个数据,即最大数为65535(本题默认为无符号),
当循环使得i超过65535时,则i会返回0重新开始计数
如i=65534,当i+=3时,i=1
其实就是 i=(65534+3)%(2^16)=1
有了这些思想,设对于某组数据要循环x次结束,那么本题就很容易得到方程:
x=[(B-A+2^k)%2^k] /C
即 Cx=(B-A)(mod 2^k) 此方程为 模线性方程,本题就是求X的值。
下面将结合《算法导论》第2版进行简述,因此先把上面的方程变形,统一符号。
令a=C
b=B-A
n=2^k
那么原模线性方程变形为:
ax=b (mod n)
该方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0
令d=gcd(a,n)
有该方程的 最小整数解为 x = e (mod n/d)
其中e = [x0 mod(n/d) + n/d] mod (n/d) ,x0为方程的最小解
那么原题就是要计算b% gcd(a,n)是否为0,若为0则计算最小整数解,否则输出FOREVER
当有解时,关键在于计算最大公约数 d=gcd(a,n) 与 最小解x0
参考《算法导论》,引入欧几里得扩展方程 d=ax+by ,
通过EXTENDED_EUCLID算法(P571)求得d、x、y值,其中返回的x就是最小解x0,求d的原理是辗转相除法(欧几里德算法)
再利用MODULAR-LINEAR-EQUATION-SOLVER算法(P564)通过x0计算x值。注意x0可能为负,因此要先 + n/d 再模n/d。
以上方法的推导过程大家自己看《算法导论》。。。这里不证明,只直接使用。
注意:
计算n=2^k时,用位运算是最快的,1<<k (1左移k位)就是2^k
但是使用long long的同学要注意格式, 1ll<<k
使用__int64的同学要强制类型转换 (__int64)1<<k
不然会WA
TLE代码:

#include<cstdio>
#include<iostream>
using namespace std;
#define ll long long
ll gcd(ll a,ll b){
if(!b) return a;
return gcd(b,a%b);
}
ll quick_pow(ll x,ll n){
if(n==) return ;
else{
while(!(n&)){
n>>=;
x*=x;
}
}
ll result=x;
n>>=;
while(n){
x*=x;
if((n&)){
result*=x;
}
n>>=;
}
return result;
}
int main(){
ll a,b,c,k;
while(scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k)==){
if(!a&&!b&&!c&&!k) break;
ll d=gcd(c,b-a);
if(b%d==){puts("FOREVER");continue;}
ll mod=quick_pow(,k);
printf("%I64d\n",(b-a+mod)%mod/c);
}
return ;
}
AC代码:
#include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
//d=ax+by,其中最大公约数d=gcd(a,n),x、y为方程系数,返回值为d、x、y
LL gcd(LL a,LL b,LL& x,LL& y){
if(b==){
x=;y=; //d=a,x=1,y=0,此时等式d=ax+by成立
return a;
}
LL d=gcd(b,a%b,x,y);
LL xt=x;
x=y;
y=xt-a/b*y;//系数x、y的取值是为满足等式d=ax+by
return d;
}
int main(){
LL A,B,C,k;
while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k)==){
if(!A&&!B&&!C&&!k) break;
LL a=C;
LL b=B-A;
LL n=1ll<<k;
LL x,y;
LL d=gcd(a,n,x,y);//求a,n的最大公约数d=gcd(a,n)和方程d=ax+by的系数x、y
if(b%d!=) puts("FOREVER");//方程 ax=b(mod n) 无解
else{
x=(x*(b/d))%n;//方程ax=b(mod n)的最小解
x=(x%(n/d)+n/d)%(n/d);//方程ax=b(mod n)的最整数小解
printf("%I64d\n",x);
}
}
return ;
}
poj2115[扩展欧几里德]的更多相关文章
- C Looooops(poj2115+扩展欧几里德)
C Looooops Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status Pr ...
- POJ2115 C Looooops 扩展欧几里德
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...
- poj2115 Looooops 扩展欧几里德的应用
好开心又做出一道,看样子做数论一定要先看书,认认真真仔仔细细的看一下各种重要的性质 及其用途,然后第一次接触的题目 边想边看别人的怎么做的,这样做出第一道题目后,后面的题目就完全可以自己思考啦 设要+ ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
随机推荐
- consist of, made up of
consist vi.由……组成:由……构成(常和介词of构成固定搭配)made up of由……组成[例如] One year consists of 365 days.一年有365天.The te ...
- log4j教程 7、日志记录级别
org.apache.log4j.Level类提供以下级别,但也可以通过Level类的子类自定义级别. Level 描述 ALL 各级包括自定义级别 DEBUG 指定细粒度信息事件是最有用的应用程序调 ...
- 机器学习第2课:单变量线性回归(Linear Regression with One Variable)
2.1 模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m 代表训练集中实 ...
- Oracle 11g Flashback_transaction_query的undo_sql为空解决办法
近日测试的时候发现 flashback_transaction_query中 undo_sql 为空,经查证这个问题是 Oracle 11g 默认把 supplemental logging 禁用了导 ...
- 6. datasource - mysql【从零开始学Spring Boot】
在任何一个平台都逃离不了数据库的操作,那么在spring boot中怎么接入数据库呢? 很简单,我们需要在application.properties进行配置一下,application.proper ...
- Pixhawk---fatal: Not a git repository (or any of the parent directories)
当从github.com上面下载下了Firmware后.无意中删除了Firmware文件夹下的.git文件夹,再去编译就会出现: fatal: Not a git repository (or ...
- odoo12新特性: 会计改进
改进分析会计 分析会计层级结构 分析分配 分析分录增加了表格视图 ============== SPECIFICATIONS ============== a. Hierarchy - Cr ...
- SearchView的全面解析
代码地址如下:http://www.demodashi.com/demo/12535.html 前言 今天来讲讲searchView的使用,这里讲的searchView是引用android.suppo ...
- 多trac的安装和配置
其他相关网页: trac+svn: http://wenku.baidu.com/view/84389a81ec3a87c24028c43f.html apache(GCI):http://hi.ba ...
- asp.net core mvc视频A:笔记3-3.Model与强类型视图
创建项目,添加TestController 定义一个类(Model),并赋值 建立视图页面 注意:Model是一个特定的对象,取决于传递过来的参数 运行结果 到现在为止,依然没有改变动态类型,需要转换 ...