pat04-树8. Complete Binary Search Tree (30)
04-树8. Complete Binary Search Tree (30)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
- 10
- 1 2 3 4 5 6 7 8 9 0
Sample Output:
- 6 3 8 1 5 7 9 0 2 4
解法一:
数组做法:
- #include<cstdio>
- #include<algorithm>
- #include<iostream>
- #include<cstring>
- #include<queue>
- #include<vector>
- #include<cmath>
- #include<string>
- using namespace std;
- int tree[],endtree[];
- int GetLeftLength(int n){
- int h=log(n+)/log();//除去最后一排的元素
- int x=n+-pow(,h);
- if(x>=pow(,h-)){
- x=pow(,h-);
- }
- return x+pow(,h-)-;
- }
- void solve(int left,int right,int root){
- int n=right-left+;
- if(!n) return;
- int l=GetLeftLength(n);
- endtree[root]=tree[left+l];
- solve(left,left+l-,root*+);
- solve(left+l+,right,root*+);
- }
- int main(){
- //freopen("D:\\INPUT.txt","r",stdin);
- int n;
- scanf("%d",&n);
- int i;
- for(i=;i<n;i++){
- scanf("%d",&tree[i]);
- }
- sort(tree,tree+n);
- solve(,n-,);
- printf("%d",endtree[]);
- for(i=;i<n;i++){
- printf(" %d",endtree[i]);
- }
- printf("\n");
- return ;
- }
方法二:
链表做法:
递归建树的思想:想找出当前的中间大的树,作为当前树根,然后遍历左子树,右子树,最后对所建的BST进行层序遍历。
当前元素总个数为n,则层数k为ceil(log2(n+1)):
1.n>=3*2^(k-2),即查找树的最后一个元素位于根的右子树部分。则此时右子树有 n-(3*2^(k-2)-1)+2^(k-2)-1 个元素,左边有 n-右子树元素个数-1=n-(n-(3*2^(k-2)-1)+2^(k-2)-1)-1=2^(k-1)-1个元素,则中间元素下标为 2^(k-1)-1 (从0开始)。
2.n<3*2^(k-2),即查找树的最后一个元素位于根的左子树部分。则此时右子树有 2^(k-2)-1 个元素,左边有 n-右子树元素个数-1=n-(2^(k-2)-1)-1=n-2^(k-2) 个元素,则中间元素下标为 n-2^(k-2) (从0开始)。
- #include<cstdio>
- #include<functional>
- #include<queue>
- #include<cmath>
- #include<algorithm>
- #include<iostream>
- using namespace std;
- int mem[];
- struct node{
- int v;
- node *l,*r;
- node(){
- l=r=NULL;
- }
- };
- void CBTBuild(int *mem,int n,int mid,node *&p){
- //q.push(mem[mid]);
- p=new node();
- p->v=mem[mid];
- //cout<<mem[mid]<<endl;
- if(mid->=){//left tree
- int nn=mid;
- int k=ceil(log(nn+)/log());
- if(nn>=*pow(,k-)){//超过一半
- CBTBuild(mem,nn,pow(,k-)-,p->l);
- }
- else{//未超过一半
- CBTBuild(mem,nn,nn-pow(,k-),p->l);
- }
- }
- if(mid+<n){//right tree
- int nn=n-(mid+);
- int k=ceil(log(nn+)/log());
- if(nn>=*pow(,k-)){//超过一半
- CBTBuild(mem+mid+,nn,pow(,k-)-,p->r);
- }
- else{//未超过一半
- CBTBuild(mem+mid+,nn,nn-pow(,k-),p->r);
- }
- }
- }
- int main(){
- //freopen("D:\\INPUT.txt","r",stdin);
- int n,i,j,k;
- queue<node> q;
- scanf("%d",&n);
- for(i=;i<n;i++){
- scanf("%d",&mem[i]);
- }
- sort(mem,mem+n);
- /*for(i=0;i<n;i++){
- cout<<mem[i]<<endl;
- }*/
- node *h;
- k=ceil(log(n+)/log());
- if(n>=*pow(,k-)){//超过一半
- CBTBuild(mem,n,pow(,k-)-,h);
- //cout<<mem[int(pow(2,k-1)-1)]<<endl;
- }
- else{//未超过一半
- CBTBuild(mem,n,n-pow(,k-),h);
- //cout<<mem[int(n-pow(2,k-2))]<<endl;
- }
- int top;
- node p=*h;
- q.push(p);
- printf("%d",p.v);
- while(!q.empty()){
- p=q.front();
- q.pop();
- if(p.l!=NULL){
- q.push(*(p.l));
- printf(" %d",p.l->v);
- }
- if(p.r!=NULL){
- q.push(*(p.r));
- printf(" %d",p.r->v);
- }
- }
- printf("\n");
- return ;
- }
pat04-树8. Complete Binary Search Tree (30)的更多相关文章
- PAT题库-1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)
1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a bin ...
- PAT甲级:1064 Complete Binary Search Tree (30分)
PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...
- pat1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- pat 甲级 1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- PTA 04-树6 Complete Binary Search Tree (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree (30分) A ...
- 1064. Complete Binary Search Tree (30)【二叉树】——PAT (Advanced Level) Practise
题目信息 1064. Complete Binary Search Tree (30) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tr ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1064 Complete Binary Search Tree (30分)(已知中序输出层序遍历)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
随机推荐
- C# 写 LeetCode easy #14 Longest Common Prefix
14.Longest Common Prefix Write a function to find the longest common prefix string amongst an array ...
- 【bzoj4939】【YNOI2016】掉进兔子洞(莫队)
题目描述 您正在打galgame,然后突然发现您今天太颓了,于是想写个数据结构题练练手: 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个 ...
- 缩点【洛谷P1262】 间谍网络
[洛谷P1262] 间谍网络 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他 ...
- 浅谈python web框架django2.x
1.Django简介 Python下有多款不同的 Web 框架,Django是最有代表性的一种.许多成功的网站和APP都基于Django. Django是一个开源的Web应用框架,由Python写成. ...
- Leetcode 121. Best Time to Buy and Sell Stock 最佳股票售卖时(动态规划,数组,模拟)
题目描述 已知一个数组,第i个元素表示第i天股票的价格,你只能进行一次交易(买卖各一次),设计算法找出最大收益 测试样例 Input: [7, 1, 5, 3, 6, 4] Output: 5 最大收 ...
- CF1101C Division and Union 线段相交问题
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #i ...
- 去除IDEA报黄色/灰色的重复代码的下划波浪线
解决方法: File---->Settings
- java Response 设置中文编码
response.setHeader("Content-type", "text/html;charset=UTF-8"); response.setChara ...
- 数据恢复(Data recovery)
定义数据恢复: 当存储介质出现损伤或由于人员误操作.操作系统故障本身故障所造成的数据不可见,无法读取.丢失. 工程师通过特殊的手段读取却在正常状态下不可见,不可读,无法读的数据. 数据恢复(Data ...
- Install ElasticSearch plugin for head
git clone git://github.com/mobz/elasticsearch-head.git yum install git npm cd elasticsearch-head npm ...