loj#6435. 「PKUSC2018」星际穿越(倍增)
题面
题解
我们先想想,在这个很特殊的图里该怎么走最短路
先设几个量,\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边(即题中的\(l_i\)),\(l\)表示当前在计算从\(i\)到\([l,i]\)中的所有点的步数总和。那么答案就是\([l,i]-[r+1,i]\)
因为\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边,那么如果从\(i\)出发,对于所有这个区间中的点,肯定是直接一步跳过去最优。证明显然
记\(mn_i\)表示\(i\)以及它右边所有的点中能跳到的最左边的点,对于所有\([mn_{a_i},a_i-1]\)中的点,肯定能够两步跳到
证明:如果\(mn_{a_i}\)是由\([a_i,i-1]\)中的点跳到的,那么第一步从\(i\)跳到那个点,第二步跳过去。如果是由\(i\)右边的点跳到的,那么从\(i\)第一步跳到右边那个点,再跳过去即可
同理,记\(x=mn_{a_i}\),所有\([mn_x,x-1]\)之间的点都能\(3\)步跳到,\(y=mn_x\),则\([mn_y,y-1]\)之间的点都能\(4\)步跳到……
我们把询问变成从\(i\)向左的两个区间相减的形式。那么从\(i\)出发,我们可以把左边的点分为若干段,每一段都有相同的最短步数
然而有可能\(a_i=i-1\),即每一次都只能往左跳一步,上面的方法就\(gg\)了
让我们看看我们上面是怎么数总步数的……\([a_i,i-1]\)乘个\(1\),\([mn_{a_i},a_i-1]\)乘个\(2\),\([mn_x,x-1]\)乘个\(3\)……
我们似乎可以换一个数法,先加上\([1,i-1]\),再加上\([1,a_i-1]\),再加上\([1,x-1]\)……
那么这样数出来的答案只要记录一下一共数了\(t\)次,最后减去\(t\times (l-1)\)就是正确答案了!
所以你这转化好像没啥子用啊……跳的次数还是没变啊……
然而我们可以倍增啊!记录一个倍增数组表示跳\(i\)步之后会到哪里,以及跳的这几步里的\(i-1\)的总和
然后就没有然后了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R ll x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=3e5+5,L=21;
inline ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
int to[N][L],mn[N],a[N],st[N];ll sum[N][L];
int n,top,l,r,x,m;ll p,q,d;
ll calc(int x,int y){
ll res=0;int las=0,now,t=0;
if(y>=a[x])return x-y;
las=a[x],res=x-1;
fd(j,19,0)if(to[las][j]>y)t|=(1<<j),res+=sum[las][j],las=to[las][j];
t+=2,res+=las-1,res-=1ll*(y-1)*t;
return res;
}
void init(){
fp(i,1,n)to[i][0]=mn[i],sum[i][0]=i-1;
for(R int j=1;j<=19;++j)fp(i,1,n){
to[i][j]=to[to[i][j-1]][j-1];
sum[i][j]=sum[i][j-1]+sum[to[i][j-1]][j-1];
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,2,n)mn[i]=a[i]=read();
fd(i,n-1,1)cmin(mn[i],mn[i+1]);
init();
m=read();
while(m--){
l=read(),r=read(),x=read();
p=calc(x,l)-calc(x,r+1);
q=r-l+1;
d=gcd(p,q),p/=d,q/=d;
print(p),sr[K]='/',print(q);
}
return Ot(),0;
}
loj#6435. 「PKUSC2018」星际穿越(倍增)的更多相关文章
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- 【LOJ】#6435. 「PKUSC2018」星际穿越
题解 想出70的大众分之后就弃疗了,正解有点神仙 就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走 根据这个可以结合RMQ写个70分的暴力 我们就考虑,最优的话显然是 ...
- #6435. 「PKUSC2018」星际穿越
考场上写出了70分,现在填个坑 比较好写的70分是这样的:(我考场上写的贼复杂) 设\(L(i)=\min_{j=i}^nl(j)\) 那么从i开始向左走第一步能到达的就是\([l(i),i-1]\) ...
- 「PKUSC2018」星际穿越 (70分做法)
5371: [Pkusc2018]星际穿越 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 27 Solved: 11[Submit][Status] ...
- 「PKUSC2018」星际穿越(倍增)
倍增好题啊! 我们我们预处理 \(f[x][i]\) 表示 \(x\) 点最左到达的端点,\(sum[x][i]\) 表示 \(x\) 点最左到达的端点时 \(f[x][i]\sim x\) 的答案, ...
- 「PKUSC2018」星际穿越
传送门 Solution 倍增 Code #include <bits/stdc++.h> #define reg register #define ll long long usin ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- LTE230方案示意图
普天LTE230产品及解决方案 责任编辑:耿鹏飞 2016.12.26 16:42 来源:通信世界网 LTE230 普天 一.LTE230系统特点 (一)系统背景 随着社会的快速发展,能源危机 ...
- LTE流程
LTE 过程全流程 1. UE处于关闭状态 2. 打开UE电源. 3. 搜索附近的频率 4. 同步时间 5. 小区搜索 6. 小区选择 7. 解码MIB 8. 解码SIB 9. 初始化RACH过程 1 ...
- python paramiko 调试
#!/usr/bin/env python #-*- encoding:utf-8 -*- import paramiko transport = paramiko.Transport(('10.34 ...
- The connection to adb is down and a sever error has occured的解决
1. 打开任务管理器,关掉豌豆夹等手机助手 2. 打开命令行,切换到adb所在目录,如:C:\Users\Jubincn\Downloads\adt-bundle-windows-x86_64-201 ...
- SpringMVC工作原理图解
SpringMVC的工作原理图: SpringMVC流程 1. 用户发送请求至前端控制器DispatcherServlet. 2. DispatcherServlet收到请求调用HandlerMa ...
- 2.《Spring学习笔记-MVC》系列文章,讲解返回json数据的文章共有3篇,分别为:
转自:https://www.cnblogs.com/ssslinppp/p/4528892.html 个人认为,使用@ResponseBody方式来实现json数据的返回比较方便,推荐使用. 摘要 ...
- HTML元素(包括HTML5)的标签、属性及事件大全
1.标签列表 标签 描述 <!–…–> 定义注释. <!DOCTYPE> 定义文档类型. <a> 定义超链接. <abbr> 定义缩写. <acr ...
- intellij idea 设置Live Template快速生成自定义代码块
一.设置 类似于宏,话不多少,上步骤 File----->Setting 选择Live Template 新建触发规则 新建触发key 输入模版text 选择在哪个环境触发 选java 如果是其 ...
- c#基础 函数
函数 就是方法 独立完成某项功能的一个个体 函数的的三个好处:1.提高代码的重用性.2.提高功能开发的效率,3.提高代码的可维护性. 函数也分为 固定功能函数, 高度抽象函数.高度抽象函数应 ...
- 高性能MySQL笔记-第5章Indexing for High Performance-003索引的作用
一. 1. 1). Indexes reduce the amount of data the server has to examine.2). Indexes help the server av ...