题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置

解题思路:经典DP,可以定义dp[i]表示以a[i]为结尾的子序列的和的最大值,因而最大连续子序列及为dp数组中的最大值。

         状态转移方程:dp[1] = a[1]; //以a[1]为结尾的子序列只有a[1];

               i >= 2时, dp[i] = max( dp[i-1]+a[i],  a[i] );

        dp[i-1]+a[i] > a[i]时,即dp[i-1](以a[i-1]为结尾的子序列的和的最大值)的值为正,那么dp[i-1]则对dp[i]有贡献,

        dp[i-1]+a[i] < a[i]时,即dp[i-1] < 0,那么抛弃它,dp[i] = a[i]

例子:序列 6 -7 5 2 -3, 则dp[i]分别为 6 -1 5 7 4,注意dp[2]直接用a[2]表示,因为dp[1] = -1 < 0; 最后最大子序列和即为dp数组中的最大值 5;

至于位置的记录,则再每次获取到最大值时更新即可。另外此题是从前往后更新,可直接使用a[i]数组而省下一个dp数组。

//最大子序列和
#include <iostream>
#include <cstdio>
#include <math.h>
#include <string.h>
#include <string>
using namespace std;
int dp[];
int t,m,l,r,start,maxx;
int main()
{
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d",&m);
for(int j=;j<=m;j++)
{
scanf("%d",&dp[j]);
}
l = r = start = ;
maxx = dp[]; for(int j=;j<=m;j++)
{
if(dp[j-] >= )
dp[j] = dp[j-] +dp[j];
else
start = j;
if(dp[j] > maxx){
maxx = dp[j];
l = start;
r = j;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<l<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}

第二种解法 ,直接在输入的时候判断是否形成最大子序列,如果数列小于零,则一直重排,不过maxx最好定义的足够小,否则会因为全部是负数这个点wa掉

#include <iostream>
#include <math.h>
#include <cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
int m,k;
int maxx = -,sum = ,l = ,r = ,cnt = ,temp;// l 不是左下标 而是maxx序列的个数
scanf("%d",&m);
int m2 = m;
while(m--)
{
scanf("%d",&k);
sum += k;
cnt++;
if(sum > maxx){
l = cnt;
maxx = sum;
r = m2 - m;
}
if(sum < ){
sum = ;
cnt = ;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<r-l+<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}

最大子序列和——HDU-1003 Max Sum的更多相关文章

  1. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  2. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  3. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  4. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  6. HDU 1003 Max Sum * 最长递增子序列(求序列累加最大值)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  8. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum(AC代码)

    #include <stdio.h> int main(){ int i,t,j,n,x; int start,end,temp,max,sum; scanf("%d" ...

  10. hdu 1003 Max Sum (动态规划)

    转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html Max Sum Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. SSAS——基础

    一.Analysis Services Analysis Services是用于决策支持和BI解决方案的数据引擎.它提供报表和客户端中使用的分析数据. 它可在多用途数据模型中创建高性能查询结构,业务逻 ...

  2. 分享知识-快乐自己:Liunx—Maven 部署步骤

    第一步: 点我下载 Liunx—Maven Linux命令下载:wget [下载文件存放路径]   [下载文件地址] 第二步: 上传 Maven 并解压到 指定的目录:(上传方式 xftp 或 rz ...

  3. 13 Python 函数进阶

    代码在运行伊始,创建的存储“变量名与值的关系”的空间叫做全局命名空间,在函数的运行中开辟的临时的空间叫做局部命名空间 命名空间和作用域 命名空间的本质:存放名字与值的绑定关系 >>> ...

  4. L105

    A pill could soon radio signals from inside your gut to help doctors diagnose diseases from ulcers t ...

  5. 07 - Django应用第四步

    知识点 1) 表单的编写 CSRF问题 forloop.counter 2) 视图函数的知识 GET和POST HttpResponseRedirect的使用 reverse的使用 3) 通用视图 C ...

  6. VC用MCI播放mp3等音乐文件

    VC播放mp3等音乐文件,可以使用MCI.MCI ( Media Control Interface ) ,即媒体控制接口,向基于Windows操作系统的应用程序提供了高层次的控制媒体设备接口的能力. ...

  7. AngularJS directive简述

    转自:http://segmentfault.com/q/1010000002400734 官方API:http://docs.angularjs.cn/api/ng/service/$compile ...

  8. CH5103 [NOIP2008]传纸条[线性DP]

    给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...

  9. ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...

  10. "_OBJC_CLASS_$_ALAssetsLibrary", referenced from:和clang: error: linker command failed with exit code 1 (use -v to see invocation)错误

    在项目中使用MWPhotoBrowser未导入ALAssetsLibrary类库时会导致编译时出现异常: "_OBJC_CLASS_$_ALAssetsLibrary", refe ...