题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置

解题思路:经典DP,可以定义dp[i]表示以a[i]为结尾的子序列的和的最大值,因而最大连续子序列及为dp数组中的最大值。

         状态转移方程:dp[1] = a[1]; //以a[1]为结尾的子序列只有a[1];

               i >= 2时, dp[i] = max( dp[i-1]+a[i],  a[i] );

        dp[i-1]+a[i] > a[i]时,即dp[i-1](以a[i-1]为结尾的子序列的和的最大值)的值为正,那么dp[i-1]则对dp[i]有贡献,

        dp[i-1]+a[i] < a[i]时,即dp[i-1] < 0,那么抛弃它,dp[i] = a[i]

例子:序列 6 -7 5 2 -3, 则dp[i]分别为 6 -1 5 7 4,注意dp[2]直接用a[2]表示,因为dp[1] = -1 < 0; 最后最大子序列和即为dp数组中的最大值 5;

至于位置的记录,则再每次获取到最大值时更新即可。另外此题是从前往后更新,可直接使用a[i]数组而省下一个dp数组。

//最大子序列和
#include <iostream>
#include <cstdio>
#include <math.h>
#include <string.h>
#include <string>
using namespace std;
int dp[];
int t,m,l,r,start,maxx;
int main()
{
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d",&m);
for(int j=;j<=m;j++)
{
scanf("%d",&dp[j]);
}
l = r = start = ;
maxx = dp[]; for(int j=;j<=m;j++)
{
if(dp[j-] >= )
dp[j] = dp[j-] +dp[j];
else
start = j;
if(dp[j] > maxx){
maxx = dp[j];
l = start;
r = j;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<l<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}

第二种解法 ,直接在输入的时候判断是否形成最大子序列,如果数列小于零,则一直重排,不过maxx最好定义的足够小,否则会因为全部是负数这个点wa掉

#include <iostream>
#include <math.h>
#include <cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
int m,k;
int maxx = -,sum = ,l = ,r = ,cnt = ,temp;// l 不是左下标 而是maxx序列的个数
scanf("%d",&m);
int m2 = m;
while(m--)
{
scanf("%d",&k);
sum += k;
cnt++;
if(sum > maxx){
l = cnt;
maxx = sum;
r = m2 - m;
}
if(sum < ){
sum = ;
cnt = ;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<r-l+<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}

最大子序列和——HDU-1003 Max Sum的更多相关文章

  1. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  2. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  3. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  4. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  6. HDU 1003 Max Sum * 最长递增子序列(求序列累加最大值)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  8. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum(AC代码)

    #include <stdio.h> int main(){ int i,t,j,n,x; int start,end,temp,max,sum; scanf("%d" ...

  10. hdu 1003 Max Sum (动态规划)

    转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html Max Sum Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. node nvm

    nvm 是 Mac 下的 node 管理工具,有点类似管理 Ruby 的 rvm,如果是需要管理 Windows 下的 node,官方推荐是使用 nvmw 或 nvm-windows . 以下具体说下 ...

  2. Linux下system函数

    http://www.jb51.net/article/40517.htm   浅析如何在c语言中调用Linux脚本 http://blog.csdn.net/koches/article/detai ...

  3. java jdk1.7后 sting intern()方法与之前的区别

    public static void main(String[] args) { String s1 = new StringBuilder("计算机").append(" ...

  4. SQL的CASE表达式用法

    case 表达式从SQL-92标准开始引入,因此是不依赖于具体的数据库技术,可提高SQL代码的可移植性. case表达式注意事项: 1. 统一各个分支返回数据类型,并保证各个when字句的排他性,因为 ...

  5. python suds 调用webservice 缓存

    在linux系统中 如果webservice更新了字段 suds调用有可能缓存以前的字段或方法,对新的字段报找不到类型 TypeNotFound,或者对 新加的方法找不到该方法的错误. 当更新或添加w ...

  6. 小程序wxss编译错误

    控制台输入openVendor() ,清除里面的wcsc.exe,然后重启工具.

  7. 优秀开源项目之一:视频监控系统iSpy

    iSpy是一个开源的视频监控软件,目前已经支持中文.自己用了一下,感觉还是很好用的.翻译了一下它的介绍. iSpy将PC变成一个完整的安全和监控系统 iSpy使用您的摄像头和麦克风来检测和记录声音或运 ...

  8. 用VLC做流媒体服务器

    VLC确切来说只是个播放器,是videolan的开源产品,videolan原来还有一个VLM,是服务器端,专门用来做流媒体服务器的,但是现在VLM的功能已经都集成进VLC了,所以也就可以用VLC来做流 ...

  9. bzoj 2510: 弱题 概率期望dp+循环矩阵

    题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...

  10. vue 打包去掉console.log

    在webpack.prod.conf.js  文件中将设置修改为 先全局找到  UglifyJsPlugin 然后修改为: new UglifyJsPlugin({ uglifyOptions: { ...