1、近邻成分分析(NCA)算法

以上内容转载自:http://blog.csdn.net/chlele0105/article/details/13006443

2、度量学习

在机器学习中,对高维数据进行降维的主要目的是找到一个合适的低维空间,在该空间中进行学习能比原始空间性能更好。每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,本质上就是寻找一个合适的距离度量。度量学习(metric learning)的基本动机就是去学习一个合适的距离度量。

降维的核心在在于寻找合适空间,而合适空间的定义就是距离度量,所以学习合适的距离度量就是度量学习的目的。要对距离度量进行学习,要有一个便于学习的距离度量表达形式。

其中M称为度量矩阵,度量学习就是对M进行学习。为保持距离非负且对称,M须是半正定对称矩阵,即必有正交基P使得M能写为M=PPT。

至此,已构建了学习的对象是M这个度量矩阵,接下来就是给学习设定一个目标从而求得M。假定是希望提高近邻分类器的性能,则可将M直接嵌入到近邻分类器的评价指标中去,通过优化该性能指标相应地求得M,以近邻成分分析(Neighbourhood Component Analysis,NCA)进行讨论。

近邻分类器判别时通常采用多数投票法,领域中的每个样本投1票,领域外的样本投0票。将其替换为概率投票法,对任意样本xj,它对xi分类结果影响的概率为:

机器学习--近邻成分分析(NCA)算法 和 度量学习的更多相关文章

  1. LDA && NCA: 降维与度量学习

    已迁移到我新博客,阅读体验更佳LDA && NCA: 降维与度量学习 代码实现放在我的github上:click me 一.Linear Discriminant Analysis(L ...

  2. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

  3. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  5. 机器学习实战笔记-k-近邻算法

    机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...

  6. 机器学习(Machine Learning)算法总结-决策树

    一.机器学习基本概念总结 分类(classification):目标标记为类别型的数据(离散型数据)回归(regression):目标标记为连续型数据 有监督学习(supervised learnin ...

  7. Topographic ICA as a Model of Natural Image Statistics(作为自然图像统计模型的拓扑独立成分分析)

    其实topographic independent component analysis 早在1999年由ICA的发明人等人就提出了,所以不算是个新技术,ICA是在1982年首先在一个神经生理学的背景 ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  9. 机器学习实战(一)k-近邻算法

    转载请注明源出处:http://www.cnblogs.com/lighten/p/7593656.html 1.原理 本章介绍机器学习实战的第一个算法——k近邻算法(k Nearest Neighb ...

随机推荐

  1. 分享知识-快乐自己:Shrio 案例Demo概述

    Shiro 权限认证核心: POM:文件: <!--shiro-all--> <dependency> <groupId>org.apache.shiro</ ...

  2. Java的反射机制(应用篇)

    Java的的反射机制,是一个很难但却比较有用的概念.反射机制经常出现在框架设计中,大神说:反射是框架设计的灵魂,也就是说要想看懂框架的源代码,必须得掌握反射机制. 作为初学者的我,觉得至少应该掌握它日 ...

  3. csv+jenkins+ant测试接口

    1.文件目录 jmeter_test case 用于存放case,csv或者txt格式,jmeter能读取的 result_log 用于存放报告 html 存放html报告 jtl 存放jtl文件 s ...

  4. linux命令学习笔记(55):traceroute命令

    通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包 由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不 ...

  5. mysql 常用的存储引擎MyISAM/InnoDB比较

  6. 【leetcode刷题笔记】Sqrt(x)

    Implement int sqrt(int x). Compute and return the square root of x. 题解:二分的方法,从0,1,2.....x搜索sqrt(x)的值 ...

  7. 尴尬的app:layout_scrollFlags="scroll|enterAlways" 配合NavigationDrawer

    昨天想到了NavigationDrawer中Item点击的问题. 点击Drawer中的一个Item需要到一个新的页面,你是应该打开一个新的Activity呢还是直接用fragment呢? 如果打开新的 ...

  8. BZOJ4976: [Lydsy1708月赛]宝石镶嵌

    BZOJ4976: [Lydsy1708月赛]宝石镶嵌 https://lydsy.com/JudgeOnline/problem.php?id=4976 分析: 本来是从\(k\le 100\)这里 ...

  9. gulp之压缩css

    /** * css压缩 * npm install --save-dev gulp-minify-css * npm install --save-dev gulp-rename * * * 可参考: ...

  10. BZOJ1218:[HNOI2003]激光炸弹

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:https://www.lydsy.com/JudgeOnline/probl ...