POJ3094 Sky Code(莫比乌斯反演)
POJ3094 Sky Code(莫比乌斯反演)
题意
给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使得gcd(a,b,c,d)=1的四元组有多少?
解法
枚举一个约数\(k\),看看总共有多少个数\(S_k=\{x\}\)满足\(k|x\)。那么可以保证(a,b,c,d)有的一个共同的因子是k,这样的四元组的个数就是
\]
这样算会算重,比如枚举到\(k=4\)再枚举到\(k=2\),这两者的方案显然有重复,加入有一个四元组满足有一个共同约数是4,那么他们一定也可以满足有一个共同约数是2。我们记\(f(x)=\)最大公因数是\(x\)的四元组的数量。上面的那个大\(F(x)\)就表示有一个公因数(不是最大公因数)是\(x\)的四元组的数量
我们数学模型化这个算重的关系:
\]
这不就是莫比乌斯反演可以解决的嘛 piece of cake
\]
那么把\(f(1)\)求出来就好了
Q:你这样不是O(n^2)吗,你怎么实现可以在正确的复杂度内得到每个数所有的因数?
A:开个桶表示每个\(|S_k|\),枚举\(i\in [2,\sqrt x]\),把\(i\)和\(x/i\)都丢在桶里计数。复杂度\(O(n^{1.5})\)注意当\(i=x/i\)的时候只算一次!
//@winlere
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll;
template < class ccf > inline ccf qr(ccf ret){ ret=0;
register char c=getchar();
while(not isdigit(c)) c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return ret;
}
const int maxn=1e4+1;
ll c[maxn][5];
int n;
ll ans;
int buk[maxn];
int cnt[maxn];
bool data[maxn];
int mu[maxn];
bool usd[maxn];
vector < int > ve;
inline void pr(){
usd[1]=1;mu[1]=0;
for(register int t=2;t<maxn;++t){
if(not usd[t]) ve.push_back(t),mu[t]=-1;
for(register int i=0,edd=ve.size();i<edd;++i){
register int k=ve[i];
if(1ll*k*t>maxn)break;
usd[k*t]=1;
if(t%k==0) break;
mu[k*t]=-mu[t];
}
}
}
int main(){
c[0][0]=1;
pr();
for(register int t=1;t<maxn;++t){
c[t][0]=1;
for(register int i=1;i<=4;++i)
c[t][i]=c[t-1][i-1]+c[t-1][i];
}
while(~scanf("%d",&n)){
ans=c[n][4];
memset(buk,0,sizeof buk);
for(register int t=1,data;t<=n;++t){
++buk[data=qr(1)];
for(register int i=2;i*i<=data;++i)
if(data%i==0)
if(++buk[i],data/i!=i) ++buk[data/i];
}
for(register int t=1;t<maxn;++t)
if(buk[t]>=4&&mu[t])
ans+=mu[t]*c[buk[t]][4];
printf("%lld\n",ans);
}
return 0;
}
POJ3094 Sky Code(莫比乌斯反演)的更多相关文章
- POJ Sky Code 莫比乌斯反演
N. Sky Code Time Limit: 1000ms Case Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO for ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- HDU 5212 Code (莫比乌斯反演)
题意:给定上一个数组,求 析: 其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到, 代码如下: #pragma comment ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
随机推荐
- Python爬取抖音视频
最近在研究Python爬虫,顺便爬了一下抖音上的视频,找到了哥们喜欢的小姐姐居多,咱们给他爬下来吧. 最终爬取结果 好了废话补多说了,上代码! #https://www.iesdouyin.com/a ...
- elasticsearch 安装和部署
jdk要用1.8以上(elasticsearch版本是1.7.3) 下载elasticsearch的tar包,解压开,更改其名称 mv elasticsearch-5.x.x elasticsear ...
- DataSet之增删改查操作(DataGridView绑定)
DataSet数据集,数据缓存在客户端内存中,支持断开式连接.DataGridView控件绑定DataSet时,它自动的改变的DS的行的状态,而且在做增删改查的时候,可以借助SqlCommandBui ...
- 系统重装 VISTA下如何删除EISA分区
现在的品牌电脑大部分都有一键还原,把还原内容存储在EISA配置的隐藏分区里面,一般的软件都无法对其进行操作,保证分区及系统还原的安全性.这样的功能对于一些人不使用一键还原(笔者即是)来说实属鸡肋功 ...
- 状态机工作流,顺序工作流和Flowchart
什么是工作流,工作流可以说是对业务处理过程的建模,当我们设计工作流的时候,我们首先要分析业务处理过程中要经历的步骤.然后,我们就可以利用WF创建工作流模型来模拟业务的处理过程. WF工作流包含两种类型 ...
- Oracle 左外连接的一些測试
为了更加深入左外连接,我们做一些測试,外连接的写法有几种形式,我们能够通过10053跟踪到终于SQL转换的形式. --初始化数据 create table A ( id number, age ...
- 国内外DNS服务器地址列表大全
DNS(Domain Name System)是域名解析服务器的意思,它在互联网的作用是把域名转换成为网络可以识别的IP地址. 通常来说,香港.韩国.日本等国的DNS服务器速度会比较快,大家可以多用几 ...
- java模拟异步消息的发送与回调
http://kt8668.iteye.com/blog/205739 本文的目的并不是介绍使用的什么技术,而是重点阐述其实现原理. 一. 异步和同步 讲通俗点,异步就是不需要等当前执行的动作完成 ...
- thinkphp5或3.2 php动态修改config配置文件永久保存
thinkphp默认的参数方法只能读取,或者动态修改不能永久修改. 这是自己摸索出来的特发出来给需要的朋友(懂的朋友别笑话,功能我自己使用是没任何问题).有些参数还是保存在配置文件方便快捷!不一定所有 ...
- Android开发和Android Studio使用教程
Android studio安装和简单介绍http://www.jianshu.com/p/36cfa1614d23 是时候把Android 项目切换到Android Studio http://ww ...