1.链接地址:

http://bailian.openjudge.cn/practice/1207/

http://poj.org/problem?id=1207

2.题目:

总时间限制:
1000ms
内存限制:
65536kB
描述
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It
is conjectured that the algorithm above will terminate (when a 1 is
printed) for any integral input value. Despite the simplicity of the
algorithm, it is unknown whether this conjecture is true. It has been
verified, however, for all integers n such that 0 < n < 1,000,000
(and, in fact, for many more numbers than this.)

Given an input
n, it is possible to determine the number of numbers printed before the 1
is printed. For a given n this is called the cycle-length of n. In the
example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

输入
The input will consist of a series of pairs of integers i and j,
one pair of integers per line. All integers will be less than 10,000 and
greater than 0.

You should process all pairs of integers and
for each pair determine the maximum cycle length over all integers
between and including i and j.

输出
For each pair of input integers i and j you should output i, j,
and the maximum cycle length for integers between and including i and j.
These three numbers should be separated by at least one space with all
three numbers on one line and with one line of output for each line of
input. The integers i and j must appear in the output in the same order
in which they appeared in the input and should be followed by the
maximum cycle length (on the same line).
样例输入
1 10
100 200
201 210
900 1000
样例输出
1 10 20
100 200 125
201 210 89
900 1000 174
来源
Duke Internet Programming Contest 1990,uva 100

3.思路:

4.代码:

 #include "stdio.h"
//#include "stdlib.h"
#define N 1000002
int a[N];
int main()
{
int i,j,k,count,n,max,tmp;
while(scanf("%d%d",&i,&j) != EOF)
{
max=;
//if(j<i){tmp=j;j=i;i=tmp;}
if(i<j)
{
max=;
for(k=i;k<=j;k++)
{
if(a[k]>) count = a[k];
else
{ count=;
n=k;
while(n!=)
{
if(n%==) n=n/;
else n=*n+;
count++;
}
}
if(count>max) max=count;
}
}
else
{
for(k=j;k<=i;k++)
{
if(a[k] > ) count = a[k];
else
{ count=;
n=k;
while(n!=)
{
if(n%==) n=n/;
else n=*n+;
count++;
}
a[k] = count;
} if(count>max) max=count;
}
}
printf("%d %d %d\n",i,j,max);
}
//system("pause");
return ;
}

OpenJudge/Poj 1207 The 3n + 1 problem的更多相关文章

  1. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  2. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  3. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  4. uva----(100)The 3n + 1 problem

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  5. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  6. 100-The 3n + 1 problem

    本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...

  7. PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  8. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  9. classnull100 - The 3n + 1 problem

    新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正  The 3n + 1 problem  Background Problems in Computer Science are o ...

随机推荐

  1. JavaScript要点 (二) 使用误区

    赋值运算符应用错误 注:赋值语句返回变量的值. 在 JavaScript 程序中如果你在 if 条件语句中使用赋值运算符的等号 (=) 将会产生一个错误结果, 正确的方法是使用比较运算符的两个等号 ( ...

  2. Finite Difference Method with Mathematica

    Euler's method

  3. spring读书笔记----Quartz Trigger JobStore出错解决

    将Quartz的JOBDetail,Trigger保持到数据库的时候发现,系统报错 The job (DEFAULT.jobDetail) referenced by the trigger does ...

  4. Dev XtraTreeList 学习

    本文转载:http://www.cnblogs.com/VincentLuo/archive/2012/01/06/2313983.html 一.设置载请保留地址http://www.cnblogs. ...

  5. 写了几年代码了,苦苦追寻,应该沉淀下来了,好好研究。net底层框架,以及较好的分层框架

    几年码农了.像沉淀下来.写一下自己的分层框架,尤其是逻辑层和orm层.数据訪问层.一切靠自己.网上一大堆框架,可是感觉各有优缺点.于是萌生了自己写适合自己的底层訪问框架?亲们,你们有适合自己的框架么?

  6. C#-设置窗体在显示器居中显示

    在窗体的属性中查看:StartPosition属性,该属性的设置中有一个"CenterScreen"的选择项,该项就是设置窗体局中显示的.

  7. Codeforces Round #324 (Div. 2) E. Anton and Ira 贪心

    E. Anton and Ira Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/probl ...

  8. skip-character-set-client-handshake 与 character-set-client-handshake

    my.cnf [mysql] default-character-set = gbk [mysqld] skip-character-set-client-handshake=1 跳过mysql程序起 ...

  9. MyDetailedOS

    http://njumdl.sinaapp.com/ https://github.com/mudongliang

  10. Shell脚本文件操作

    Linux Shell http://baike.baidu.com/link?url=2LxUhKzlh5xBUgQrS0JEc61xi761nvCS7SHJsa1U1SkVbw3CC869AoUC ...