Widget Factory

题意:有n件装饰品,有m组信息。(1 <= n ,m<= 300)每组信息有开始的星期和结束的星期(是在mod 7范围内的)并且还包括num种装饰品的种类(1~n),其中每种装饰品所用的时间3 <= x[i] <= 9;种类的输入可以重复;

思路:

1.根据输入建立增广矩阵a[][],但是在建立和求解的过程中由于是mod意义下的,所以输入的个数和最终所用的时间都要mod 7;(分析可知当个数是7的同余类时,开始星期相同则结束星期也相同)

2.前面几个高斯消元,我用的是free_var来判断是否有自由变元,这是在输入的方程数和求解变元数相等的情况才成立。在本题中对于sample 1就会发现方程数原本就比变元多1,这时计算出的free_var = 1,但是并不是将就有了一个维度的自由变元。还是要看有用方程的个数row与var之间的关系;

3.在得到上三角阵求解变元x[i]的时候,需要解一个模线性方程,a[i][i]*x[i] + 7*y = ret(mod 7);ret为a[i][col]用已知的x[j]消去除a[i][i]得到的;

这时调用exgcd()即可求解;最后注意解要在3~9范围内即可;

ps:时间性能不是很好,竟然用了1704ms...最短的是297ms..差距啊!!!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
int a[][];
int equ,var;
int x[];
const int MOD = ;
template <typename T>
T abs(T a){return a < ? -a:a;}
void debug()
{
puts("********");
int i,j;
rep0(i,,equ){
rep1(j,,var)
cout<<a[i][j]<<" ";
cout<<endl;
}puts("********");
}
int __gcd(int a,int b)
{
return b?__gcd(b,a%b):a;
}
int LCM(int a,int b)
{
return a/__gcd(a,b)*b;
}
void exgcd(int a,int b,int& d,int& x,int& y)
{
if(!b){d = a;x = ;y = ;}
else{
exgcd(b,a%b,d,y,x);
y -= x*(a/b);
}
}
int Guass()
{
int i,j,k,free_var = ,row,col;
for(row = ,col = ;row < equ && col < var;row++,col++){
int mx = row;
rep0(j,row+,equ)
if(abs(a[j][col]) > abs(a[mx][col])) mx = j;
if(a[mx][col] == ){
row--; // 行不变;不能通过这里记录自由变元的个数,只能记录没用的col
continue;
}
if(mx != row)
rep1(k,col,var)
swap(a[row][k],a[mx][k]);
rep0(j,row+,equ){
if(a[j][col]){
int lcm = LCM(abs(a[row][col]),abs(a[j][col]));
int ration_row = lcm/abs(a[row][col]),ration_j = lcm/abs(a[j][col]);
if(a[row][col]*a[j][col] < ) ration_row = -ration_row; //符号相反变加法;
rep1(k,col,var)
a[j][k] = (a[j][k]*ration_j - a[row][k]*ration_row)%;
}
}
}
//debug();
rep0(i,row,equ)
if(a[i][var] != ) return -; //无解
if(row < var) return var - row;//row表示有用的方程数方程,但是要在判断出有解的前提下才能说有多组解;
rep_1(i,var - ,){ // ***若为唯一解,其实就是var维方阵
int ret = a[i][var];
for(j = i+;j < var;j++) //利用已求得的变元消去第row行col后面的元素,得到一元方程;
ret -= x[j]*a[i][j];
ret = ((ret%)+)%;
int d,x1,y;
//构造出 a[i][i]*x[i] + 7*y = ret(mod 7);且gcd(a[row][col],7) = 1)因为a[row][col] != 0
if(a[i][i] < ) a[i][i] = -a[i][i],ret = -ret;
exgcd(a[i][i],,d,x1,y); //之后乘上ret弄到3~9范围即可;
x[i] = ((ret*x1)%+)%;
if(x[i] < ) x[i] += ;
}
return ;
}
const char str[][] = {{"MON"},{"TUE"},{"WED"},{"THU"},{"FRI"},{"SAT"},{"SUN"}};
int date_id(char *c)
{
for(int i = ;i < ;i++)
if(strcmp(str[i],c) == ) return i;
}
int main()
{
int i,j,n,m;
char s[],t[];
while(scanf("%d%d",&n,&m) == && n + m){
MS0(a);
equ = m;var = n;
int kind,num;
rep0(i,,m){
scanf("%d%s%s",&num,s,t);
a[i][var] = date_id(t)-date_id(s)+;
if(a[i][var] < ) a[i][var] += ;
rep0(j,,num){
scanf("%d",&kind);
a[i][--kind]++;
}
rep1(j,,var) a[i][j] %= ;
}
//debug();
int ret = Guass();
if(ret == -) puts("Inconsistent data.");
else if(ret > ) puts("Multiple solutions.");
else{
rep0(i,,var)
printf("%d%c",x[i],i == var - ?'\n':' ');
}
}
return ;
}

poj 2947 Widget Factory的更多相关文章

  1. POJ 2947 Widget Factory(高斯消元)

    Description The widget factory produces several different kinds of widgets. Each widget is carefully ...

  2. poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)

    http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...

  3. Poj 2947 widget factory (高斯消元解同模方程)

    题目连接: http://poj.org/problem?id=2947 题目大意: 有n种类型的零件,m个工人,每个零件的加工时间是[3,9],每个工人在一个特定的时间段内可以生产k个零件(可以相同 ...

  4. POJ 2947 Widget Factory (高斯消元 判多解 无解 和解集 模7情况)

    题目链接 题意: 公司被吞并,老员工几乎全部被炒鱿鱼.一共有n种不同的工具,编号1-N(代码中是0—N-1), 每种工具的加工时间为3—9天 ,但是现在老员工不在我们不知道每种工具的加工时间,庆幸的是 ...

  5. 【POJ】2947 Widget Factory(高斯消元)

    http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...

  6. POJ 2947 2947 Widget Factory 高斯消元

    给出组件的数量n,给出记录的数量m(n就是变元数量,m是方程数量).每一个记录代表一个方程,求每个组件的生产天数. 高斯消元即可 #include <cstdio> #include &l ...

  7. POJ Widget Factory 【求解模线性方程】

    传送门:http://poj.org/problem?id=2947 Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  8. POJ 2947:Widget Factory 求同余方程

    Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 5173   Accepted: 1790 De ...

  9. 使用 jQuery UI Widget Factory 编写有状态的插件(Stateful Plugins)

    使用 jQuery UI Widget Factory 编写有状态的插件(Stateful Plugins) Note 这一章节的内容是基于 Scott Gonzalez 一篇博客 Building ...

随机推荐

  1. poj 2724 二分图最大匹配

    题意: 会给出M个串,我们要做的就是将这M个串给清除了.对于任意两个串,若二进制形式只有一位不一样,那么这两个串可以在一次操作消除,否则每个操作只能消除一个串. 3 3 *01 100 011 可以代 ...

  2. asp.net mvc 的几种分页Pager

    第一种 /// <summary> /// 分页Pager显示 /// </summary> /// <param name="html">&l ...

  3. this.class.getClassLoader()怎么理解?

    this.class.getClassLoader()怎么理解? java是面向对象语言,面向对象的语言的宗旨就是万事万物皆对象,那么类也是一个对象,类里面的属性和方法也是对象.java里面的所 有的 ...

  4. android——获取ImageView上面显示的图片bitmap对象

    获取的函数方法为:Bitmap bitmap=imageView.getDrawingCache(); 但是如果只是这样写我们得到的bitmap对象可能为null值,正确的方式为: imageView ...

  5. Android 快捷方式相关操作

    尽管现在少数手机不支持快捷方式,但是仍然有大部分手机是支持的.创建快捷方式,可以减少用户在应用列表繁多的应用程序中查找应用的时间,快速进入应用:或是应用中的某个功能使用频率较高,创建快捷方式,可以快速 ...

  6. JDBC之数据库操作

    JDBC重要界面有: java.sgl.DriverManager:完成驱动程序的装载和建立新的数据库连接. java.sgl.Connection:表示对某一指定数据库的连接. java.sgl.S ...

  7. Excel数据生成Sql语句的方法

    选中想要生成的列,套用表格格式,选中表包含标题的选项确定,然后在最右边的一列第二行处,点击函数功能,选择CONCATENATE,在文本里输入想要的结构即可  代码如下 复制代码 ,=CONCATENA ...

  8. jQuery中的getter和setter方法

    1.attr()方法是jQuery中用于HTML属性的getter/setter.一个相关函数是removeAttr(). 2.css()方法和attr()方法很类似,只是css()方法作用于元素的c ...

  9. 【leetcode】363. Max Sum of Rectangle No Larger Than K

    题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...

  10. C++四种强制类型转换关键字

    C语言使用强制类型转换(Type Cast)很简单,不管什么类型的转换,形式都如下: TYPE b = (TYPE)a; c++提供了4种类型转换操作符来应对不同场合的应用. const_cast   ...