本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PCA降维与NMF降维不同类别评估器。

(原文:This example constructs a pipeline that does dimensionality reduction followed by prediction with a support vector classifier. It demonstrates the use of GridSearchCV and Pipeline to optimize over different classes of estimators in a single CV run – unsupervised PCA and NMF dimensionality reductions are compared to univariate feature selection during the grid search.)

# coding:utf-8

from __future__ import print_function, division
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2
from pylab import * pipe = Pipeline([
('reduce_dim', PCA()),
('classify', LinearSVC())
]) N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = [u'主成分分析(PCA)', u'非负矩阵分解(NMF)', u'KBest(chi2)'] grid = GridSearchCV(pipe, cv=3, n_jobs=2, param_grid=param_grid)
digits = load_digits()
grid.fit(digits.data, digits.target) mean_scores = np.array(grid.cv_results_['mean_test_score'])
# 得分按照param_grid的迭代顺序,在这里就是字母顺序
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
# 为最优C选择分数
mean_scores = mean_scores.max(axis=0)
bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) *
(len(reducer_labels) + 1) + .5) myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc")
mpl.rcParams['axes.unicode_minus'] = False plt.figure()
COLORS = 'bgrcmyk'
for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)):
plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i]) plt.title(u"特征降维技术的比较",fontproperties=myfont)
plt.xlabel(u'特征减少的数量',fontproperties=myfont)
plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS)
plt.ylabel(u'数字的分类精度',fontproperties=myfont)
plt.ylim((0, 1))
plt.legend(loc='upper left',prop=myfont)
plt.show()

scikit-learn一般实例之四:使用管道和GridSearchCV选择降维的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. Selenium2学习-031-WebUI自动化实战实例-029-JavaScript 在 Selenium 自动化中的应用实例之四(获取元素位置和大小)

    通过 JS 或 JQuery 获取到元素后,通过 offsetLeft.offsetTop.offsetWidth.offsetHeight 即可获得元素的位置和大小,非常的简单,直接上源码了,敬请参 ...

  4. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  5. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  6. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  7. scikit-learn一般实例之四:管道的使用:链接一个主成分分析和Logistic回归

    主成分分析(PCA)进行无监督的降维,而逻辑回归进行预测. 我们使用GridSearchCV来设置PCA的维度 # coding:utf-8 from pylab import * import nu ...

  8. Angular4.0从入门到实战打造在线竞拍网站学习笔记之四--数据绑定&管道

    Angular4.0基础知识之组件 Angular4.0基础知识之路由 Angular4.0依赖注入 数据绑定 数据绑定允许你将组件控制器的属性和方法与组件的模板连接起来,大大降低了开发时的编码量. ...

  9. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

随机推荐

  1. C++ 应用程序性能优化

    C++ 应用程序性能优化 eryar@163.com 1. Introduction 对于几何造型内核OpenCASCADE,由于会涉及到大量的数值算法,如矩阵相关计算,微积分,Newton迭代法解方 ...

  2. Cocos2d Android 环境搭建

    1.在开始之前,需要先准备好资源如下,如果安卓开发环境有了直接装第3.4. 1.JDK      点击下载 (1.6) 2.ADT(已经自带Android SDK)点击下载 3.NDK 点击下载 4. ...

  3. 创建几个常用table展示方式插件

    这次和大家分享的是自己写的一个table常用几种展示格式的js插件取名为(table-shenniu),样式使用的是bootstrap.min.css,还需要引用jquery.min.js包,这个插件 ...

  4. RabbitMq应用一的补充(RabbitMQ的应用场景)

    直接进入正题. 一.异步处理 场景:发送手机验证码,邮件 传统古老处理方式如下图 这个流程,全部在主线程完成,注册->入库->发送邮件->发送短信,由于都在主线程,所以要等待每一步完 ...

  5. [C#] C# 知识回顾 - 特性 Attribute

    C# 知识回顾 - 特性 Attribute [博主]反骨仔 [原文地址]http://www.cnblogs.com/liqingwen/p/5911289.html 目录 特性简介 使用特性 特性 ...

  6. “fixed+relative==absolute”——对BFC的再次思考

    好久没写博客了,刚好今天跨年夜没约到什么妹子,在家宅着不如写点东西好了. 需求 昨天晚上,给公司年会做一个移动端的投票页面,遇到一个UI优化的问题: · 正文内容少于一屏时,投票提交按钮固定显示在页面 ...

  7. JavaScript学习笔记(四)——jQuery插件开发与发布

    jQuery插件就是以jQuery库为基础衍生出来的库,jQuery插件的好处是封装功能,提高了代码的复用性,加快了开发速度,现在网络上开源的jQuery插件非常多,随着版本的不停迭代越来越稳定好用, ...

  8. BPM配置故事之案例1-配置简单流程

    某天,Boss找到了信息部工程师小明. Boss:咱们新上了H3 BPM,你研究研究把现在的采购申请流程加上去吧,这是采购申请单. 小明:好嘞 采购申请单 小明回去后拿着表单想了想,开始着手配置. 他 ...

  9. 解决Ubuntu Kylin 1610安装ANSYS17.2的NVIDIA显卡驱动问题

    Ubuntu Kylin 1610在安装完毕后,会自动安装显卡驱动,对于一般的图形图像使用来说自然不会有太大的问题,但是对于ANSYS17.2的一些模块,还是会出现问题.一个比较常见的问题就是Open ...

  10. Android Bitmap 和 ByteArray的互相转换

    Android Bitmap 和 ByteArray的互相转换 移动平台图像处理,需要将图像传给native处理,如何传递?将bitmap转换成一个 byte[] 方便传递也方便cpp代码直接处理图像 ...