版本号信息: hadoop 2.3.0  hive 0.11.0

1. Application Master 无法訪问

    点击application mater 链接,出现 http 500 错误,java.lang.Connect.exception:
    问题是因为设定web ui时,50030 port相应的ip地址为0.0.0.0,导致application master 链接无法定位。

解决的方法:
     yarn-site.xml 文件
    <property>
        <description>The address of the RM web application.</description>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>xxxxxxxxxx:50030</value>
    </property>
    这是2.3.0 的里面的一个bug 1811 ,2.4.0已经修复

2. History UI 无法訪问 和 container 打不开
     点击 Tracking URL:History无法訪问
       问题是 history service 没有启动
      
  解决的方法:
     配置:选择(xxxxxxxxxx:
作为history sever)
   
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
   <property>
        <name>mapreduce.jobhistory.address</name>
        <value>xxxxxxxxxx::10020</value>
    </property>

    <property>
    <name>mapreduce.jobhistory.webapp.address</name>
        <value>xxxxxxxxxx:19888</value>
    </property>

  sbin/mr-jobhistory-daemon.sh   
start historyserver

3 yarn 平台的优化
 
设置
虚拟cpu的个数
    <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>23</value> 
    </property>
    设置使用的内存
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>61440</value>
        <description>the amount of memory on the NodeManager in GB</description>
    </property>
设置每一个任务最大使用的内存
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>49152</value>
        <source>yarn-default.xml</source>

</property>


4 执行任务 提示: Found interface org.apache.hadoop.mapreduce.Counter,
but class was expected
改动pom,又一次install
    <dependency>
           <groupId>org.apache.hadoop</groupId>
           <artifactId>hadoop-common</artifactId>
           <version>2.3.0</version>
   </dependency>    
 <dependency>
         <groupId>org.apache.hadoop</groupId>
         <artifactId>hadoop-mapreduce-client-core</artifactId>
         <version>2.3.0</version>

</dependency>

   <dependency>
                <groupId>org.apache.mrunit</groupId>
                <artifactId>mrunit</artifactId>
                <version>1.0.0</version>
                <classifier>hadoop2</classifier>
                <scope>test</scope>
            </dependency>
jdk 换成1.7



5 执行任务提示shuffle内存溢出Java heap space
2014-05-14 16:44:22,010 FATAL [IPC Server handler 4 on 44508] org.apache.hadoop.mapred.TaskAttemptListenerImpl: Task: attempt_1400048775904_0006_r_000004_0 - exited : org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuffle in fetcher#3
    at org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:134)
    at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:376)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163)
Caused by: java.lang.OutOfMemoryError: Java heap space
    at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:56)
    at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:46)
    at org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput.<init>(InMemoryMapOutput.java:63)
    at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.unconditionalReserve(MergeManagerImpl.java:297)
    at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.reserve(MergeManagerImpl.java:287)
    at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:411)
    at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:341)
    at org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:165)
来源: <http:/xxxxxxxxxx:19888/jobhistory/logs/ST-L09-05-back-tj-yarn15:8034/container_1400048775904_0006_01_000001/job_1400048775904_0006/hadoop/syslog/?start=0>

解决方法:
调低mapreduce.reduce.shuffle.memory.limit.percent的值
默觉得0.25 如今调成0.10 


參考:
http://www.sqlparty.com/yarn%E5%9C%A8shuffle%E9%98%B6%E6%AE%B5%E5%86%85%E5%AD%98%E4%B8%8D%E8%B6%B3%E9%97%AE%E9%A2%98error-in-shuffle-in-fetcher/

6 reduce 任务的log 中间发现:

2014-05-14 17:51:21,835 WARN [Readahead Thread #2] org.apache.hadoop.io.ReadaheadPool: Failed readahead on ifile
EINVAL: Invalid argument
    at org.apache.hadoop.io.nativeio.NativeIO$POSIX.posix_fadvise(Native Method)
    at org.apache.hadoop.io.nativeio.NativeIO$POSIX.posixFadviseIfPossible(NativeIO.java:263)
    at org.apache.hadoop.io.nativeio.NativeIO$POSIX$CacheManipulator.posixFadviseIfPossible(NativeIO.java:142)
    at org.apache.hadoop.io.ReadaheadPool$ReadaheadRequestImpl.run(ReadaheadPool.java:206)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)
来源: <http://xxxxxxxxxx:8042/node/containerlogs/container_1400060792764_0001_01_000726/hadoop/syslog/?start=-4096>
ps: 错误没有再现,暂无解决方法


7 hive 任务

java.lang.InstantiationException: org.antlr.runtime.CommonToken
Continuing ...
java.lang.RuntimeException: failed to evaluate: <unbound>=Class.new();
參考:https://issues.apache.org/jira/browse/HIVE-4222s

8 hive 任务自己主动把join装换mapjoin时内存溢出,解决方法:关闭自己主动装换,11前的版本号默认值为false,后面的为true;
在任务脚本里面加上:set
hive.auto.convert.join=false;
或者在hive-site.xml 配上为false;
出错日志:
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2014-05-15 02:40:58     Starting to launch local task to process map join;      maximum memory = 1011351552
2014-05-15 02:41:00     Processing rows:        200000  Hashtable size: 199999  Memory usage:   110092544       rate:   0.109
2014-05-15 02:41:01     Processing rows:        300000  Hashtable size: 299999  Memory usage:   229345424       rate:   0.227
2014-05-15 02:41:01     Processing rows:        400000  Hashtable size: 399999  Memory usage:   170296368       rate:   0.168
2014-05-15 02:41:01     Processing rows:        500000  Hashtable size: 499999  Memory usage:   285961568       rate:   0.283
2014-05-15 02:41:02     Processing rows:        600000  Hashtable size: 599999  Memory usage:   408727616       rate:   0.404
2014-05-15 02:41:02     Processing rows:        700000  Hashtable size: 699999  Memory usage:   333867920       rate:   0.33
2014-05-15 02:41:02     Processing rows:        800000  Hashtable size: 799999  Memory usage:   459541208       rate:   0.454
2014-05-15 02:41:03     Processing rows:        900000  Hashtable size: 899999  Memory usage:   391524456       rate:   0.387
2014-05-15 02:41:03     Processing rows:        1000000 Hashtable size: 999999  Memory usage:   514140152       rate:   0.508
2014-05-15 02:41:03     Processing rows:        1029052 Hashtable size: 1029052 Memory usage:   546126888       rate:   0.54
2014-05-15 02:41:03     Dump the hashtable into file: file:/tmp/hadoop/hive_2014-05-15_14-40-53_413_3806680380261480764/-local-10002/HashTable-Stage-4/MapJoin-mapfile01--.hashtable
2014-05-15 02:41:06     Upload 1 File to: file:/tmp/hadoop/hive_2014-05-15_14-40-53_413_3806680380261480764/-local-10002/HashTable-Stage-4/MapJoin-mapfile01--.hashtable File size: 68300588
2014-05-15 02:41:06     End of local task; Time Taken: 8.301 sec.
Execution completed successfully
Mapred Local Task Succeeded . Convert the Join into MapJoin
Mapred Local Task Succeeded . Convert the Join into MapJoin
Launching Job 2 out of 2

log出错日志:
2014-05-15 13:52:54,007 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: Java heap space
    at java.io.ObjectInputStream$HandleTable.grow(ObjectInputStream.java:3465)
    at java.io.ObjectInputStream$HandleTable.assign(ObjectInputStream.java:3271)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1789)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
    at java.util.HashMap.readObject(HashMap.java:1183)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
    at org.apache.hadoop.hive.ql.exec.persistence.HashMapWrapper.initilizePersistentHash(HashMapWrapper.java:128)
    at org.apache.hadoop.hive.ql.exec.MapJoinOperator.loadHashTable(MapJoinOperator.java:194)
    at org.apache.hadoop.hive.ql.exec.MapJoinOperator.cleanUpInputFileChangedOp(MapJoinOperator.java:212)
    at org.apache.hadoop.hive.ql.exec.Operator.cleanUpInputFileChanged(Operator.java:1377)
    at org.apache.hadoop.hive.ql.exec.Operator.cleanUpInputFileChanged(Operator.java:1381)
来源: <http://xxxxxxxxxx:19888/jobhistory/logs/ST-L09-10-back-tj-yarn21:8034/container_1400064445468_0013_01_000002/attempt_1400064445468_0013_m_000000_0/hadoop/syslog/?start=0>



9 hive执行时 提示:
failed to evaluate: <unbound>=Class.new(); ,升级到0.13.0
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings
for an explanation.SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]OKTime taken: 2.28 secondsjava.lang.InstantiationException: org.antlr.runtime.CommonTokenContinuing ...java.lang.RuntimeException: failed to evaluate: <unbound>=Class.new();Continuing
...java.lang.InstantiationException: org.antlr.runtime.CommonTokenContinuing ...java.lang.RuntimeException: failed to evaluate: <unbound>=Class.new();Continuing ...java.lang.InstantiationException: org.antlr.runtime.CommonTokenContinuing ...java.lang.RuntimeException:
failed to evaluate: <unbound>=Class.new();Continuing ...java.lang.InstantiationException: org.antlr.runtime.CommonTokenContinuing ...java.lang.RuntimeException: failed to evaluate: <unbound>=Class.new();Continuing ...java.lang.InstantiationException: org.antlr.runtime.CommonTokenContinuing
...


这个应该升级后能解决,只是不知道为什么我升级12.0 和13.0 ,一执行就报错fileNotfundHIVE_PLANxxxxxxxxx
。ps (參考11)应该是我配置有问题,暂无解决方法。






10 hive 创建表或者数据库的时候 Couldnt
obtain a new sequence (unique id) : You have an error in your SQL syntax
解决方法:这个是由于hive元数据库的名字是yarn-hive, sql中中划线是关键词,所以sql错误。把数据库名去掉中划线,问题解决。
错误日志:
FAILED: Error in metadata: MetaException(message:javax.jdo.JDOException: Couldnt obtain a new sequence (unique id) : You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '-hive.`SEQUENCE_TABLE`
WHERE `SEQUENCE_NAME`='org.apache.hadoop.hive.metastore.m' at line 1
        at org.datanucleus.api.jdo.NucleusJDOHelper.getJDOExceptionForNucleusException(NucleusJDOHelper.java:596)
        at org.datanucleus.api.jdo.JDOPersistenceManager.jdoMakePersistent(JDOPersistenceManager.java:732)
        at org.datanucleus.api.jdo.JDOPersistenceManager.makePersistent(JDOPersistenceManager.java:752)
        at org.apache.hadoop.hive.metastore.ObjectStore.createTable(ObjectStore.java:643)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.hive.metastore.RetryingRawStore.invoke(RetryingRawStore.java:111)
        at com.sun.proxy.$Proxy14.createTable(Unknown Source)
        at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.create_table_core(HiveMetaStore.java:1070)
        at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.create_table_with_environment_context(HiveMetaStore.java:1103)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.hive.metastore.RetryingHMSHandler.invoke(RetryingHMSHandler.java:103)
        at com.sun.proxy.$Proxy15.create_table_with_environment_context(Unknown Source)
        at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.createTable(HiveMetaStoreClient.java:466)
        at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.createTable(HiveMetaStoreClient.java:455)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.invoke(RetryingMetaStoreClient.java:74)
        at com.sun.proxy.$Proxy16.createTable(Unknown Source)
        at org.apache.hadoop.hive.ql.metadata.Hive.createTable(Hive.java:597)
        at org.apache.hadoop.hive.ql.exec.DDLTask.createTable(DDLTask.java:3777)
        at org.apache.hadoop.hive.ql.exec.DDLTask.execute(DDLTask.java:256)
        at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:144)
        at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:57)
        at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:1362)
        at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1146)
        at org.apache.hadoop.hive.ql.Driver.run(Driver.java:952)
        at shark.SharkCliDriver.processCmd(SharkCliDriver.scala:338)
        at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:413)
        at shark.SharkCliDriver$.main(SharkCliDriver.scala:235)
        at shark.SharkCliDriver.main(SharkCliDriver.scala)
NestedThrowablesStackTrace:
com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '-hive.`SEQUENCE_TABLE` WHERE `SEQUENCE_NAME`='org.apache.hadoop.hive.metastore.m'
at line 1
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
        at com.mysql.jdbc.Util.handleNewInstance(Util.java:406)
        at com.mysql.jdbc.Util.getInstance(Util.java:381)
        at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1030)
        at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)
        at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3558)
        at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3490)
        at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:1959)
        at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2109)
        at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2648)
        at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:2077)
        at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:2228)
        at org.apache.commons.dbcp.DelegatingPreparedStatement.executeQuery(DelegatingPreparedStatement.java:96)
        at org.apache.commons.dbcp.DelegatingPreparedStatement.executeQuery(DelegatingPreparedStatement.java:96)
        at org.datanucleus.store.rdbms.ParamLoggingPreparedStatement.executeQuery(ParamLoggingPreparedStatement.java:381)
        at org.datanucleus.store.rdbms.SQLController.executeStatementQuery(SQLController.java:504)
        at org.datanucleus.store.rdbms.valuegenerator.SequenceTable.getNextVal(SequenceTable.java:197)
        at org.datanucleus.store.rdbms.valuegenerator.TableGenerator.reserveBlock(TableGenerator.java:190)
        at org.datanucleus.store.valuegenerator.AbstractGenerator.reserveBlock(AbstractGenerator.java:305)
        at org.datanucleus.store.rdbms.valuegenerator.AbstractRDBMSGenerator.obtainGenerationBlock(AbstractRDBMSGenerator.java:170)
        at org.datanucleus.store.valuegenerator.AbstractGenerator.obtainGenerationBlock(AbstractGenerator.java:197)
        at org.datanucleus.store.valuegenerator.AbstractGenerator.next(AbstractGenerator.java:105)
        at org.datanucleus.store.rdbms.RDBMSStoreManager.getStrategyValueForGenerator(RDBMSStoreManager.java:2019)
        at org.datanucleus.store.AbstractStoreManager.getStrategyValue(AbstractStoreManager.java:1385)
        at org.datanucleus.ExecutionContextImpl.newObjectId(ExecutionContextImpl.java:3727)
        at org.datanucleus.state.JDOStateManager.setIdentity(JDOStateManager.java:2574)
        at org.datanucleus.state.JDOStateManager.initialiseForPersistentNew(JDOStateManager.java:526)
        at org.datanucleus.state.ObjectProviderFactoryImpl.newForPersistentNew(ObjectProviderFactoryImpl.java:202)
        at org.datanucleus.ExecutionContextImpl.newObjectProviderForPersistentNew(ExecutionContextImpl.java:1326)
        at org.datanucleus.ExecutionContextImpl.persistObjectInternal(ExecutionContextImpl.java:2123)
        at org.datanucleus.ExecutionContextImpl.persistObjectWork(ExecutionContextImpl.java:1972)
        at org.datanucleus.ExecutionContextImpl.persistObject(ExecutionContextImpl.java:1820)
        at org.datanucleus.ExecutionContextThreadedImpl.persistObject(ExecutionContextThreadedImpl.java:217)
        at org.datanucleus.api.jdo.JDOPersistenceManager.jdoMakePersistent(JDOPersistenceManager.java:727)
        at org.datanucleus.api.jdo.JDOPersistenceManager.makePersistent(JDOPersistenceManager.java:752)
        at org.apache.hadoop.hive.metastore.ObjectStore.createTable(ObjectStore.java:643)


11 安装hive 12 和13 后,执行任务报错提示:FileNotFoundException:
HIVE_PLAN
解决方法:可能是hive一个bug,也可能那里配置错了 ,待解决

错误日志

2014-05-16 10:27:07,896 INFO [main] org.apache.hadoop.mapred.MapTask: Processing split: Paths:/user/hive/warehouse/game_predata.db/game_login_log/dt=0000-00-00/000000_0:201326592+60792998,/user/hive/warehouse/game_predata.db/game_login_log/dt=0000-00-00/000001_0_copy_1:201326592+58503492,/user/hive/warehouse/game_predata.db/game_login_log/dt=0000-00-00/000001_0_copy_2:67108864+67108864,/user/hive/warehouse/game_predata.db/game_login_log/dt=0000-00-00/000001_0_copy_2:134217728+67108864,/user/hive/warehouse/game_predata.db/game_login_log/dt=0000-00-00/000002_0_copy_1:67108864+67108864InputFormatClass:
org.apache.hadoop.mapred.TextInputFormat
 
2014-05-16 10:27:07,954 WARN [main] org.apache.hadoop.mapred.YarnChild: Exception running child : java.lang.RuntimeException: java.io.FileNotFoundException: HIVE_PLAN14c8af69-0156-4633-9273-6a812eb91a4c (没有那个文件或文件夹)
    at org.apache.hadoop.hive.ql.exec.Utilities.getMapRedWork(Utilities.java:230)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.init(HiveInputFormat.java:255)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.pushProjectionsAndFilters(HiveInputFormat.java:381)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.pushProjectionsAndFilters(HiveInputFormat.java:374)
    at org.apache.hadoop.hive.ql.io.CombineHiveInputFormat.getRecordReader(CombineHiveInputFormat.java:540)
    at org.apache.hadoop.mapred.MapTask$TrackedRecordReader.<init>(MapTask.java:168)
    at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:409)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:342)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163)
Caused by: java.io.FileNotFoundException: HIVE_PLAN14c8af69-0156-4633-9273-6a812eb91a4c (没有那个文件或文件夹)
    at java.io.FileInputStream.open(Native Method)
    at java.io.FileInputStream.<init>(FileInputStream.java:146)
    at java.io.FileInputStream.<init>(FileInputStream.java:101)
    at org.apache.hadoop.hive.ql.exec.Utilities.getMapRedWork(Utilities.java:221)
    ... 12 more
 
2014-05-16 10:27:07,957 INFO [main] org.apache.hadoop.mapred.Task: Runnning cleanup for the task
来源: <http://sxxxxxxxxxx:19888/jobhistory/logs/ST-L10-10-back-tj-yarn10:8034/container_1400136017046_0026_01_000030/attempt_1400136017046_0026_m_000000_0/hadoop>

12java.lang.OutOfMemoryError:
GC overhead limit exceeded 

分析:这个是JDK6新添的错误类型。是发生在GC占用大量时间为释放非常小空间的时候发生的,是一种保护机制。解决方式是,关闭该功能,能够加入JVM的启动參数来限制使用内存: -XX:-UseGCOverheadLimit 

加入位置是:mapred-site.xml 里新增项:mapred.child.java.opts 内容:-XX:-UseGCOverheadLimit

參考14


13hive
  hive 0.10.0为了运行效率考虑,简单的查询,就是仅仅是select,不带count,sum,group by这种,都不走map/reduce,直接读取hdfs文件进行filter过滤。这样做的优点就是不新开mr任务,运行效率要提高不少,可是不好的地方就是用户界面不友好,有时候数据量大还是要等非常长时间,可是又没有不论什么返回。

改这个非常easy,在hive-site.xml里面有个配置參数叫

hive.fetch.task.conversion

将这个參数设置为more,简单查询就不走map/reduce了,设置为minimal,就不论什么简单select都会走map/reduce。

參考14


14 执行mr 任务的时候提示:

错误日志
Container [pid=30486,containerID=container_1400229396615_0011_01_000012] is running beyond physical memory limits. Current usage: 1.0 GB of 1 GB physical memory used; 1.7 GB of 2.1 GB virtual memory used. Killing container. Dump of the process-tree for container_1400229396615_0011_01_000012 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 30501 30486 30486 30486 (java) 3924 322 1720471552 262096 /opt/jdk1.7.0_55/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx1024m -XX:-UseGCOverheadLimit -Djava.io.tmpdir=/home/nodemanager/local/usercache/hadoop/appcache/application_1400229396615_0011/container_1400229396615_0011_01_000012/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/home/hadoop/logs/nodemanager/logs/application_1400229396615_0011/container_1400229396615_0011_01_000012 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA org.apache.hadoop.mapred.YarnChild 30.30.30.39 47925 attempt_1400229396615_0011_m_000000_0 12 |- 30486 12812 30486 30486 (bash) 0 0 108642304 302 /bin/bash -c /opt/jdk1.7.0_55/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx1024m -XX:-UseGCOverheadLimit -Djava.io.tmpdir=/home/nodemanager/local/usercache/hadoop/appcache/application_1400229396615_0011/container_1400229396615_0011_01_000012/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/home/hadoop/logs/nodemanager/logs/application_1400229396615_0011/container_1400229396615_0011_01_000012 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA org.apache.hadoop.mapred.YarnChild 30.30.30.39 47925 attempt_1400229396615_0011_m_000000_0 12 1>/home/hadoop/logs/nodemanager/logs/application_1400229396615_0011/container_1400229396615_0011_01_000012/stdout 2>/home/hadoop/logs/nodemanager/logs/application_1400229396615_0011/container_1400229396615_0011_01_000012/stderr Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143

解决方法:
 
以下的參数是关于mapreduce任务执行时的内存设置,假设有的任务须要可单独配置,就统一配置了。假设有container被kill 能够适当调高
mapreduce.map.memory.mb    map任务的最大内存
mapreduce.map.java.opts -Xmx1024M map任务jvm的參数
mapreduce.reduce.memory.mb  reduce任务的最大内存
mapreduce.reduce.java.opts -Xmx2560M reduce任务jvm的參数
mapreduce.task.io.sort.mb 512 Higher memory-limit while sorting data for efficiency.

 
关闭内存检測进程:
是在搞不清楚 问什么有的任务就物理内存200多MB ,虚拟内存就飙到2.7G了,预计内存检測进程有问题,并且我有的任务是须要大内存的,为了进度,索性关了,一下子解决全部内存问题。
yarn.nodemanager.pmem-check-enabled false
yarn.nodemanager.vmem-check-enabled false


15 yarn 的webUI 有关的调整:


1 cluser 页面 application的starttime 和finishtime 都是 UTC格式,改成 +8区时间也就是北京时间。

./share/hadoop/yarn/hadoop-yarn-common-2.3.0.jar
里面的webapps.static.yarn.dt.plugins.js

 
或者源代码包里面:/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-common/src/main/resources/webapps/static/yarn.dt.plugins.js

加入代码:
Date.prototype.Format = function (fmt) { //author: meizz
var o = {
"M+": this.getMonth() + 1, //月份
"d+": this.getDate(), //日
"h+": this.getHours(), //小时
"m+": this.getMinutes(), //分
"s+": this.getSeconds(), //秒
"q+": Math.floor((this.getMonth() + 3) / 3), //季度
"S": this.getMilliseconds() //毫秒
};
if (/(y+)/.test(fmt)) fmt = fmt.replace(RegExp.$1, (this.getFullYear() + "").substr(4 - RegExp.$1.length));
for (var k in o)
if (new RegExp("(" + k + ")").test(fmt)) fmt = fmt.replace(RegExp.$1, (RegExp.$1.length == 1) ? (o[k]) : (("00" + o[k]).substr(("" + o[k]).length)));
return fmt;
};


同一时候按以下改动下的代码
function renderHadoopDate(data, type, full)
{ if (type === 'display' || type === 'filter') { if(data === '0') { return "N/A"; }
return new Date(parseInt(data)).Format("yyyy-MM-dd hh:mm:ss"); }



16  MR1的任务用到DistributedCache 的任务迁移到MR2上出错。原来我里面使用文件名称区分不同的缓存文件,MR2里面分发文件以后仅仅保留的文件名称如:
application_xxxxxxx/container_14xxxx/part-m-00000
application_xxxxxxx/container_14xxxx/part-m-00001
application_xxxxxxx/container_14xxxx/00000_0


解决方法:每一个缓存文件加入符号链接,链接为 父级名字+文件名称
DistributedCache.addCacheFile(new URI(path.toString() + "#"+ path.getParent().getName() + "_" + path.getName()),
configuration);

这样就会生成带有文件名称的缓存文件





未完待续

各个无心爱

yarn 集群部署,遇到的问题小结的更多相关文章

  1. 大数据【三】YARN集群部署

    一 概述 YARN是一个资源管理.任务调度的框架,采用master/slave架构,主要包含三大模块:ResourceManager(RM).NodeManager(NM).ApplicationMa ...

  2. Ha-Federation-hdfs +Yarn集群部署方式

    经过一下午的尝试,终于把这个集群的搭建好了,搭完感觉也没有太大的必要,就当是学习了吧,为之后搭建真实环境做基础. 以下搭建的是一个Ha-Federation-hdfs+Yarn的集群部署. 首先讲一下 ...

  3. (转)yarn 集群部署,遇到的问题小结

    link:http://blog.csdn.net/uniquechao/article/details/26449761   版本信息: hadoop 2.3.0  hive 0.11.0   1. ...

  4. spark on yarn 集群部署

    概述 hadoop2.7.1 spark 1.5.1 192.168.31.62   resourcemanager, namenode, master 192.168.31.63   nodeman ...

  5. Flink集群部署

    部署方式 一般来讲有三种方式: Local Standalone Flink On Yarn/Mesos/K8s… 单机模式 参考上一篇Flink从入门到放弃(入门篇2)-本地环境搭建&构建第 ...

  6. Quartz.net持久化与集群部署开发详解

    序言 我前边有几篇文章有介绍过quartz的基本使用语法与类库.但是他的执行计划都是被写在本地的xml文件中.无法做集群部署,我让它看起来脆弱不堪,那是我的罪过. 但是quart.net是经过许多大项 ...

  7. Hadoop 2.6.0 集群部署

    Hadoop的集群部署和单节点部署类似,配置文件不同,另外需要修改网络方面的配置 首先,准备3台虚拟机,系统为CentOS 6.6,其中一台为namenode 剩余两台为 datanode: 修改主机 ...

  8. HP DL160 Gen9服务器集群部署文档

    HP DL160 Gen9服务器集群部署文档 硬件配置=======================================================Server        Memo ...

  9. t持久化与集群部署开发详解

    Quartz.net持久化与集群部署开发详解 序言 我前边有几篇文章有介绍过quartz的基本使用语法与类库.但是他的执行计划都是被写在本地的xml文件中.无法做集群部署,我让它看起来脆弱不堪,那是我 ...

随机推荐

  1. Hashtable与HashMap区别(2)

    提到hashtable,先要澄清两个问题hashCode与equals().Hashtable有容量和加载因子,容量相当于桶,因子相当于桶里的对象.而hashCode我们可以把它理解为桶的序号,所以H ...

  2. UVa 10900 (连续概率、递推) So you want to be a 2n-aire?

    题意: 初始奖金为1块钱,有n个问题,连续回答对i个问题后,奖金变为2i元. 回答对每道题的概率在t~1之间均匀分布. 听到问题后有两个选择: 放弃回答,拿走已得到的奖金 回答问题: 如果回答正确,奖 ...

  3. 三个流行MySQL分支的对比

    MySQL是历史上最受欢迎的免费开源程序之一.它是成千上万个网站的数据库骨干,并且可以将它(和Linux)作为过去10年里Internet呈指数级增长的一个有力证明. 那么,如果MySQL真的这么重要 ...

  4. mysql 触发器学习(可以将mysql数据同步到redis)

    1. 一个简单的例子 1.1. 创建表: create table t(s1 integer); 1.2. 触发器: delimiter | create trigger t_trigger befo ...

  5. 【Markdown】Writing on Github - 在GitHub上写作

    Writing on GitHub https://github.com/shalliestera/Writing-on-GitHub-Chinese-Translation Markdown 基本语 ...

  6. Apache配置虚拟目录和多主机头

    呃,相当古老的话题了,不过网上的资料实在是太坑爹,无奈只能自己动手做个备忘了...这里不提虚拟目录和主机头的区别了,不懂得童鞋去面壁思过吧 多个虚拟目录 首先把Apache安装到D:\Program ...

  7. 方格取数(1)(HDU 1565状压dp)

    题意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大.   分析:直接枚举 ...

  8. POJ 1904 King's Quest 强连通分量+二分图增广判定

    http://www.cnblogs.com/zxndgv/archive/2011/08/06/2129333.html 这位神说的很好 #include <iostream> #inc ...

  9. 【转】vnc centos

    原文:http://www.cnblogs.com/niocai/archive/2011/11/02/2233332.html 我的CentOS版本是6.0,下述方法在i386和x86_64中均适用 ...

  10. Puppet学习:pp文件权限问题

    由于内网的Puppet还是在测试中,所以对文件权限等内容未做过多关注. 今天报了错误: Error: Could not retrieve catalog from remote server: Er ...