这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html

解体思路详见:http://blog.csdn.net/lvlu911/article/details/5425974

代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
#define MAX 50000
using namespace std;
int an[]={,,,,,,,,,,,,,
,,,,,};
void fun(int n,int k)
{
if(n==){
cout<<'X';
return;
}
int i,sum=;
for(i=;sum<k;i++)
sum+=an[i]*an[n-i-];
i--;
sum-=an[i]*an[n-i-];
k-=sum;
if(i){
cout<<'(';
fun(i,(k-)/an[n-i-]+);
cout<<')';
}
cout<<'X';
if(n-i-){
cout<<'(';
fun(n-i-,(k-)%an[n-i-]+);
cout<<')';
}
}
int main(){
int n,m,sum,i;
while(cin>>n&&n){
sum=;
for(i=;sum<n;i++)
sum+=an[i];
i--;
fun(i,n-sum+an[i]);
cout<<endl;
}
return ;
}

poj 1095 Trees Made to Order 卡特兰数的更多相关文章

  1. POJ 1095 Trees Made to Order(卡特兰数列)

    题目链接 中间计算的各种细节.有的细节没处理好,就wa了...主要思路就是根据卡特兰数列的: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n&g ...

  2. poj 1095 Trees Made to Order

    http://poj.org/problem?id=1095 先求出n个节点数的二叉树的形态有多少种.卡特兰数f[n]=f[n-1]*(4*n-2)/(n+1);再递归求. #include < ...

  3. POJ 1095 Trees Made to Order 最详细的解题报告

    题目来源:Trees Made to Order 题目大意:根据下面的规则给一棵二叉树编号: 规则1:如果二叉树为空,则编号为0: 规则2:如果二叉树只有一个节点,则编号为1: 规则3:所有含有m个节 ...

  4. Trees Made to Order——Catalan数和递归

    Trees Made to Order Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7155   Accepted: 40 ...

  5. POJ 2084 Game of Connections(卡特兰数)

    卡特兰数源于组合数学,ACM中比较具体的使用例子有,1括号匹配的种数.2在栈中的自然数出栈的种数.3求多边形内三角形的个数.4,n个数围城圆圈,找不相交线段的个数.5给定n个数,求组成二叉树的种数…… ...

  6. poj 1095 题解(卡特兰数+递归

    题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编 ...

  7. UVa 10007 - Count the Trees(卡特兰数+阶乘+大数)

    题目链接:UVa 10007 题意:统计n个节点的二叉树的个数 1个节点形成的二叉树的形状个数为:1 2个节点形成的二叉树的形状个数为:2 3个节点形成的二叉树的形状个数为:5 4个节点形成的二叉树的 ...

  8. hdu 1130 How Many Trees? 【卡特兰数】

    题目 题意:给你一个数字n,问你将1~n这n个数字,可以组成多少棵不同的二叉搜索树. 1,2,5,14--根据输出中的规律可以看出这是一个卡特兰数的序列.于是代用卡特兰数中的一个递推式: 因为输入可取 ...

  9. hdu 1130How Many Trees?(卡特兰数)

    卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列. 以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零 ...

随机推荐

  1. iOS开发——Touch ID 指纹识别

    项目中为了安全性,一般使用密码或iPhone手机的指纹识别Touch ID. 第一步,判断系统是否支持,iOS8.0及以上才支持. 第二步,判断手机是否支持,带Touch ID的手机iPhone5s及 ...

  2. c# DateTime时间格式和JAVA时间戳格式相互转换

    /// java时间戳格式时间戳转为C#格式时间 public static DateTime GetTime(long timeStamp) { DateTime dtStart = TimeZon ...

  3. 洛古 P1373 小a和uim之大逃离

    P1373 小a和uim之大逃离 题目提供者lzn 标签 动态规划 洛谷原创 难度 提高+/省选- 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电 ...

  4. php parallel

    http://www.phpied.com/simultaneuos-http-requests-in-php-with-curl/ http://stackoverflow.com/question ...

  5. [CSS]浮动的那点事儿

    元素是怎样浮动 元素的水平方向浮动,意味着元素只能左右移动而不能上下移动. 一个浮动元素会尽量向左或向右移动,直到它的外边缘碰到包含框或另一个浮动框的边框为止. 浮动元素之后的元素将围绕它. 浮动元素 ...

  6. struts2中的常量

    struts2中的常量: 在:struts2-core-2.1.8.1\org\apache\struts2\default.properties 文件里 <!-- 配制i18n国际化--> ...

  7. HTML邮件制作规范

    以下内容有些是别人总结的,有些是自己在工作中总结的. 模板最佳尺寸:显示宽度550px-750px,模板高度控制在一屏以内. 1. 用table+css方式构建模板 Div+css布局不完全被邮件客户 ...

  8. ics OverbyteIcsHttpProt

    else begin { V7.05 begin } if (FRequestType = httpPOST) or (FRequestType = httpPUT) then begin {$IFD ...

  9. 使用FileResult导出txtl数据文件

    public FileResult ExportMobileNoTxt(SearchClientModel model){ var sbTxt = new StringBuilder(); ; i & ...

  10. 利用IDE编写C语言程序的一点注意事项

    前言:我是喜欢编程的一只菜鸟,在自学过程中,对遇到的一些问题和困惑,有时虽有一点体会感悟,但时间一长就会淡忘,很不利于知识的积累.因此,想通过博客园这个平台,一来记录自己的学习体会,二来便于向众多高手 ...