Bloom Filter:海量数据的HashSet
Bloom Filter一般用于数据的去重计算,近似于HashSet的功能;但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况。
1. 基本原理
Bloom Filter能高效地表征数据集合\(S = \lbrace x_1 ,x_2 ,...,x_n \rbrace\),判断某个数据是否属于这个集合。其基本思想如下:用长度为\(m\)的位数组\(A\)来存储集合信息,同时是有\(k\)个独立的hash函数\(h_i(1\le i \le k)\)将数据映射到位数组空间。具体流程如下:
- 将长度为\(m\)的位数组全置为0;
- 对于数据\(x \in S\),依次计算其\(k\)个hash函数值\(h_i(x)=w,且1\le i \le k, 1 \le w \le m\),将位数组中的第\(a\)位bit置为1,即A[w]=1.
当查询数据\(y\)是否属于集合\(S\)时,计算其\(k\)个hash函数值,如果\(h_i(y)\)对应的位数组均为1,则数据\(y\)属于集合\(S\);反之,则不属于。
2. 相关计算
在上述判断中,可能存在误判(false positive, FP),比如某数的\(k\)个hash函数值可能属于集合\(S\)中某几个数\(k\)个hash函数值组成的集合。显然,误判率跟集合大小\(n\)、位数组大小\(m\)、hash函数的个数\(k\)有关;在其他条件不变的情况下,若\(n\)越大(\(m\)越小,或\(k\)越多),则误判率越高。误判率估算公式如下:
\]
在实际的场景中,常常是已知集合大小\(n\),预设误判率\(P_{fp}\),需要计算位数组大小\(m\)、hash函数的个数\(k\)。通过一系列的数学推导,可得到如下公式:
\]
\]
详细的数学推导可参看相关文档。
3. 实战
Bloom Filter的Java实现有Guava、stream-lib,Scala实现有breeze、bloom-filter-scala。采用breeze库的Distinct Count实现如下:
import breeze.util.BloomFilter
val bf = BloomFilter.optimallySized[Int](5, 0.01)
val arr = Array(1, 3, 4, 5, 1, 2, 6, 3, 1)
var cnt = 0
arr.foreach { t =>
bf.contains(t) match {
case false => cnt += 1; bf.+=(t)
case _ =>
}
}
println(arr.distinct.length) // 6
println(cnt) // 6
从上面的Scala代码中,不难发现:在Distinct Count计算过程中,需要定义一个global变量,逐一用于对每个不属于集合元素进行计算。显然,在分布式计算中,这种方法不太适用;因为global变量没法做到实时的传递更新。因此,另一种估算算法HyperLogLog,拥有优秀的可加性、易于并行化,在大数据的场景下应用广泛——Spark、Kylin中的近似Distinct Count便是基于此。
4. 参考资料
[1] Broder, Andrei, and Michael Mitzenmacher. "Network Applications of Bloom Filters: A Survey." Internet Mathematics 1.4 (2011): 485-509.
[2] 张俊林, 《大数据日知录》.
Bloom Filter:海量数据的HashSet的更多相关文章
- 实例学习Bloom Filter
0. 科普1. 为什么需要Bloom Filter2. 基本原理3. 如何设计Bloom Filter4. 实例操作5. 扩展 0. 科普 Bloom Filter是由Bloom在1970年提出的一种 ...
- Bloom Filter 算法具体解释
Bloom Filter 算法 Bloom filter是由Burton Bloom 在1970年提出的,其后在P2P上得到了广泛的应用.Bloom filter 算法可用来查询某一数据是否在某一数据 ...
- Bloom Filter (海量数据处理)
什么是Bloom Filter 先来看这样一个爬虫相关问题:文件A中有10亿条URL,每条URL占用64字节,机器的内存限制是4G,现有一个URL,请判断它是否存在于文件A中(爬过的URL无需再爬). ...
- Bloom Filter的应用
1.布隆过滤器是什么? 又快又小的处理方法 布隆过滤器(Bloom Filter):是一种空间效率极高的概率型算法和数据结构,用于判断一个元素是否在集合中(类似Hashset). 它的核心一个很长的二 ...
- php实现Bloom Filter
Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的高速查找算法,用于高速查找某个元素是否属于集合, 但不要求百分百的准确率. Bloom filter通经常使用于爬 ...
- 布隆过滤器(Bloom Filter)原理以及应用
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 探索C#之布隆过滤器(Bloom filter)
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...
- Bloom Filter 布隆过滤器
Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...
随机推荐
- Linux CentOS 配置JDK环境
一.下载JDK 下载JDK的方式有两种: 1.Linux中使用wget下载 1.使用命令安装wget yum install wget 2.下载 wget 'http://download.oracl ...
- Partition:增加分区
在关系型 DB中,分区表经常使用DateKey(int 数据类型)作为Partition Column,每个月的数据填充到同一个Partition中,由于在Fore-End呈现的报表大多数是基于Mon ...
- C# 条形码操作【源码下载】
本篇介绍通过C#生成和读取一维码.二维码的操作. 目录 1. 介绍:介绍条形码.条形码的分类以及ZXing.Net类库. 2. 一维码操作:包含对一维码的生成.读取操作. 3. 二维码操作:包含对二维 ...
- [转]利用URLConnection来发送POST和GET请求
URL的openConnection()方法将返回一个URLConnection对象,该对象表示应用程序和 URL 之间的通信链接.程序可以通过URLConnection实例向该URL发送请求.读取U ...
- 【接口开发】浅谈 SOAP Webserver 与 Restful Webserver 区别
接口,强大,简单,交互,跨越平台 下面简单阐述这两大接口思想 一 REST: REST是一种架构风格,其核心是面向资源,REST专门针对网络应用设计和开发方式,以降低开发的复杂性,提高系统的可伸缩性. ...
- 关于python的bottle框架跨域请求报错问题的处理
在用python的bottle框架开发时,前端使用ajax跨域访问时,js代码老是进入不了success,而是进入了error,而返回的状态却是200.url直接在浏览器访问也是正常的,浏览器按F12 ...
- 主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...
- 来吧,HTML5之基础标签(下)
<dialog> 标签 定义对话框或窗口. <dialog> 标签是 HTML 5 的新标签.目前只有 Chrome 和 Safari 6 支持 <dialog> ...
- ES6的一些常用特性
由于公司的前端业务全部基于ES6开发,于是给自己开个小灶补补ES6的一些常用特性.原来打算花两天学习ES6的,结果花了3天才勉强过了一遍阮老师的ES6标准入门(水好深,ES6没学好ES7又来了...) ...
- Oracle SQL Developer 连接 MySQL
1. 在ORACLE官网下载Oracle SQL Developer第三方数据库驱动 下载页面:http://www.oracle.com/technetwork/developer-tools/sq ...