Bloom Filter一般用于数据的去重计算,近似于HashSet的功能;但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况。

1. 基本原理

Bloom Filter能高效地表征数据集合\(S = \lbrace x_1 ,x_2 ,...,x_n \rbrace\),判断某个数据是否属于这个集合。其基本思想如下:用长度为\(m\)的位数组\(A\)来存储集合信息,同时是有\(k\)个独立的hash函数\(h_i(1\le i \le k)\)将数据映射到位数组空间。具体流程如下:

  1. 将长度为\(m\)的位数组全置为0;
  2. 对于数据\(x \in S\),依次计算其\(k\)个hash函数值\(h_i(x)=w,且1\le i \le k, 1 \le w \le m\),将位数组中的第\(a\)位bit置为1,即A[w]=1.

当查询数据\(y\)是否属于集合\(S\)时,计算其\(k\)个hash函数值,如果\(h_i(y)\)对应的位数组均为1,则数据\(y\)属于集合\(S\);反之,则不属于。

2. 相关计算

在上述判断中,可能存在误判(false positive, FP),比如某数的\(k\)个hash函数值可能属于集合\(S\)中某几个数\(k\)个hash函数值组成的集合。显然,误判率跟集合大小\(n\)、位数组大小\(m\)、hash函数的个数\(k\)有关;在其他条件不变的情况下,若\(n\)越大(\(m\)越小,或\(k\)越多),则误判率越高。误判率估算公式如下:

\[P_{fp} \approx (1-e^{-kn/m})^k
\]

在实际的场景中,常常是已知集合大小\(n\),预设误判率\(P_{fp}\),需要计算位数组大小\(m\)、hash函数的个数\(k\)。通过一系列的数学推导,可得到如下公式:

\[m= - \frac{n\ln P_{fp}}{(\ln 2)^2}
\]

\[k=\frac{m}{n}\ln 2
\]

详细的数学推导可参看相关文档。

3. 实战

Bloom Filter的Java实现有Guava、stream-lib,Scala实现有breezebloom-filter-scala。采用breeze库的Distinct Count实现如下:

import breeze.util.BloomFilter

val bf = BloomFilter.optimallySized[Int](5, 0.01)
val arr = Array(1, 3, 4, 5, 1, 2, 6, 3, 1)
var cnt = 0
arr.foreach { t =>
bf.contains(t) match {
case false => cnt += 1; bf.+=(t)
case _ =>
}
}
println(arr.distinct.length) // 6
println(cnt) // 6

从上面的Scala代码中,不难发现:在Distinct Count计算过程中,需要定义一个global变量,逐一用于对每个不属于集合元素进行计算。显然,在分布式计算中,这种方法不太适用;因为global变量没法做到实时的传递更新。因此,另一种估算算法HyperLogLog,拥有优秀的可加性、易于并行化,在大数据的场景下应用广泛——Spark、Kylin中的近似Distinct Count便是基于此。

4. 参考资料

[1] Broder, Andrei, and Michael Mitzenmacher. "Network Applications of Bloom Filters: A Survey." Internet Mathematics 1.4 (2011): 485-509.

[2] 张俊林, 《大数据日知录》.

Bloom Filter:海量数据的HashSet的更多相关文章

  1. 实例学习Bloom Filter

    0. 科普1. 为什么需要Bloom Filter2. 基本原理3. 如何设计Bloom Filter4. 实例操作5. 扩展 0. 科普 Bloom Filter是由Bloom在1970年提出的一种 ...

  2. Bloom Filter 算法具体解释

    Bloom Filter 算法 Bloom filter是由Burton Bloom 在1970年提出的,其后在P2P上得到了广泛的应用.Bloom filter 算法可用来查询某一数据是否在某一数据 ...

  3. Bloom Filter (海量数据处理)

    什么是Bloom Filter 先来看这样一个爬虫相关问题:文件A中有10亿条URL,每条URL占用64字节,机器的内存限制是4G,现有一个URL,请判断它是否存在于文件A中(爬过的URL无需再爬). ...

  4. Bloom Filter的应用

    1.布隆过滤器是什么? 又快又小的处理方法 布隆过滤器(Bloom Filter):是一种空间效率极高的概率型算法和数据结构,用于判断一个元素是否在集合中(类似Hashset). 它的核心一个很长的二 ...

  5. php实现Bloom Filter

    Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的高速查找算法,用于高速查找某个元素是否属于集合, 但不要求百分百的准确率. Bloom filter通经常使用于爬 ...

  6. 布隆过滤器(Bloom Filter)原理以及应用

    应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的 ...

  7. 布隆过滤器 Bloom Filter 2

    date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...

  8. 探索C#之布隆过滤器(Bloom filter)

    阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...

  9. Bloom Filter 布隆过滤器

    Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...

随机推荐

  1. Linux CentOS 配置JDK环境

    一.下载JDK 下载JDK的方式有两种: 1.Linux中使用wget下载 1.使用命令安装wget yum install wget 2.下载 wget 'http://download.oracl ...

  2. Partition:增加分区

    在关系型 DB中,分区表经常使用DateKey(int 数据类型)作为Partition Column,每个月的数据填充到同一个Partition中,由于在Fore-End呈现的报表大多数是基于Mon ...

  3. C# 条形码操作【源码下载】

    本篇介绍通过C#生成和读取一维码.二维码的操作. 目录 1. 介绍:介绍条形码.条形码的分类以及ZXing.Net类库. 2. 一维码操作:包含对一维码的生成.读取操作. 3. 二维码操作:包含对二维 ...

  4. [转]利用URLConnection来发送POST和GET请求

    URL的openConnection()方法将返回一个URLConnection对象,该对象表示应用程序和 URL 之间的通信链接.程序可以通过URLConnection实例向该URL发送请求.读取U ...

  5. 【接口开发】浅谈 SOAP Webserver 与 Restful Webserver 区别

    接口,强大,简单,交互,跨越平台 下面简单阐述这两大接口思想 一 REST: REST是一种架构风格,其核心是面向资源,REST专门针对网络应用设计和开发方式,以降低开发的复杂性,提高系统的可伸缩性. ...

  6. 关于python的bottle框架跨域请求报错问题的处理

    在用python的bottle框架开发时,前端使用ajax跨域访问时,js代码老是进入不了success,而是进入了error,而返回的状态却是200.url直接在浏览器访问也是正常的,浏览器按F12 ...

  7. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  8. 来吧,HTML5之基础标签(下)

    <dialog> 标签 定义对话框或窗口. <dialog> 标签是 HTML 5 的新标签.目前只有 Chrome 和 Safari 6 支持 <dialog>  ...

  9. ES6的一些常用特性

    由于公司的前端业务全部基于ES6开发,于是给自己开个小灶补补ES6的一些常用特性.原来打算花两天学习ES6的,结果花了3天才勉强过了一遍阮老师的ES6标准入门(水好深,ES6没学好ES7又来了...) ...

  10. Oracle SQL Developer 连接 MySQL

    1. 在ORACLE官网下载Oracle SQL Developer第三方数据库驱动 下载页面:http://www.oracle.com/technetwork/developer-tools/sq ...