【BZOJ】【2208】【JSOI2010】连通数
题解:
1.Tarjan缩点以后对每个连通分量进行深搜,看能到哪些连通分量,能到达的所有连通分量的size之和记为sum。则第i个连通分量对答案的贡献为size[i]*sum(到其他连通分量)+size[i]*size[i](本身互相可达)
2.在网上搜了一下……这题可以直接dfs过……汗。“正解”是Tarjan缩点+拓扑排序+状态压缩
/**************************************************************
Problem: 2208
User: Tunix
Language: C++
Result: Accepted
Time:9476 ms
Memory:64772 kb
****************************************************************/ //BZOJ 2208
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
const int N=;
typedef long long LL;
void read(int &v){
v=; int sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
v*=sign;
}
/*******************tamplate********************/
int to1[N*N],head1[N],next1[N*N],cnt=;
int to2[N*N],head2[N],next2[N*N];
void ins1(int x,int y){
to1[++cnt]=y; next1[cnt]=head1[x]; head1[x]=cnt;
}
void ins2(int x,int y){
to2[++cnt]=y; next2[cnt]=head2[x]; head2[x]=cnt;
}
/***********************************************/
int n,m;
int dfn[N],low[N],dfs_clock=,belong[N],num,size[N];
int st[N],top=;
bool in[N];
void tarjan(int x){
int y;
dfn[x]=low[x]=++dfs_clock;
st[top++]=x;
in[x]=;
for(int i=head1[x];i;i=next1[i]){
y=to1[i];
if (!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if (in[y]) low[x]=min(low[x],dfn[y]);
}
if (low[x]==dfn[x]){
num++; size[num]=;
for(y=;y!=x;){
y=st[--top];
in[y]=;
belong[y]=num;
size[num]++;
}
}
}
void rebuild(){
cnt=;
F(x,,n)
for(int i=head1[x];i;i=next1[i])
if (belong[x]!=belong[to1[i]])
ins2(belong[x],belong[to1[i]]);
}
/***********************************************/
bool vis[N];
int sum=;
void dfs(int x){
int y;
for(int i=head2[x];i;i=next2[i]){
y=to2[i];
if (!vis[y]){
vis[y]=;
sum+=size[y];
dfs(y);
}
}
}
void solve(){
LL ans=;
F(i,,num){
memset(vis,,sizeof vis);
sum=;
dfs(i);
ans+=size[i]*sum+size[i]*size[i];
}
printf("%lld\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
#endif
read(n);
char s[N];
F(i,,n){
scanf("%s",s);
rep(j,strlen(s))
if (s[j]=='') ins1(i,j+);
}
F(i,,n) if (!dfn[i]) tarjan(i);
rebuild();
solve();
return ;
}
【BZOJ】【2208】【JSOI2010】连通数的更多相关文章
- BZOJ 2208: [Jsoi2010]连通数 tarjan bitset
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2208: [Jsoi2010]连通数( DFS )
n只有2000,直接DFS就可以过了... -------------------------------------------------------------------------- #in ...
- bzoj 2208 [Jsoi2010]连通数
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 输入数据第一行是图顶点的数量,一个正整数N ...
- BZOJ.2208.[JSOI2010]连通数(bitset Tarjan 拓扑)
题目链接 先缩点,对于scc之间贡献即为szscc[i]*szscc[j] 用f[i][j]表示scci是否能到sccj 拓扑排序,每次把now的f或上to的f 用bitset优化 //63888kb ...
- bzoj 2208: [Jsoi2010]连通数【tarjan+拓扑+dp】
我总觉得枚举点bfs也行-- tarjan缩点,记一下每个scc的size,bitset压一下scc里的点,然后按拓扑倒序向上合并到达状态,然后加ans的时候记得乘size #include<i ...
- BZOJ 2208 JSOI2010 连通数 Tarjan+拓扑排序
题目大意:给定一个n个点的有向图,求有多少点对(x,y),使x沿边可到达y 设f[i][j]为从i到j是否可达 首先强联通分量中的随意两个点均可达 于是我们利用Tarjan缩点 缩点之后是一个拓扑图. ...
- 2208: [Jsoi2010]连通数
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1371 Solved: 557[Submit][Status ...
- 2208: [Jsoi2010]连通数 - BZOJ
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- 【BZOJ】2208 [Jsoi2010]连通数
[题意]给定n个点的有向图,求可达点对数(互相可达算两对,含自身).n<=2000. [算法]强连通分量(tarjan)+拓扑排序+状态压缩(bitset) [题解]这题可以说非常经典了. 1. ...
- bzoj2208:[Jsoi2010]连通数
http://blog.csdn.net/u013598409/article/details/47037499 里面似乎有生成数据的... //我本来的想法是tarjan缩点之后然后将图遍历一遍就可 ...
随机推荐
- 【SNMP】SNMP概述
SNMP概述 SNMP(Simple Network Management Protocol,简单网络管理协议)是目前UDP/IP网络中应用最为广泛的网络管理协议,它提供了一个管理框架来监控和维护互联 ...
- 博客转移到 海胖网 http://haipz.com/ 希望你能支持我们!
博客转移到 海胖网 http://haipz.com/ 希望你能支持我们! 博客转移到 海胖网 http://haipz.com/ 希望你能支持我们! 博客转移到 海胖网 http://haipz.c ...
- 用户输入内容转换成Pig Latin形式。
//(单词的第一个元音字母之前的一道单词后面,以"ay"结尾,英语单词首字母为元音字母或者没有元音字母的以“ay”为后缀.)package toPigLatin; import j ...
- centos6.5安装flume
这里安装flume是因为游戏业务日志搜集和分析用的 1.安装java 环境rpm -ivh jdk-8u51-linux-x64.rpm Preparing... ################## ...
- jQuery增加删除修改tab导航特效
HTML: <div class="container iden_top"> <ul> ...
- dmp文件导入
dmp文件导入 1,打开“开始”-->输入cmd—> sqlplus log: 2,输入 conn / as sysdba管理员账户登录: 3,需要创建表空间,如果我们知道需要导入的数据库 ...
- UINavigationController 与 UITabBarController
http://www.cnblogs.com/YouXianMing/p/3756904.html // index start from 1. UITabBarItem *newsItem = [[ ...
- php ftp文件上传函数--新手入门参考
在 php编程中,用ftp上传文件比较多见,这里分享个简单入门型的ftp上传实例. <?php /** * ftp上传文件 * 学习ftp函数的用法 */ // 定义变量 $local_file ...
- CentOS如何分区
安装Linux CentOS时,需要在硬盘建立CentOS使用的分区,在大多情况下,至少需要为CentOS建立以下3个分区. (1)/boot分区(不是必须的):/boot分区用于引导系统,它包含了操 ...
- AndroidSDK无法下载API包的解决方法
1:打开Android SDK Manager”,然后点击菜单栏中的“Tools”菜单选项,接下来只需选择“Options”选项即可打开设置窗体,在打开的选项中找到Others框,里面勾选第一个: F ...