Prime Query


Time Limit: 1 Second      Memory Limit: 196608 KB

You are given a simple task. Given a sequence A[i] with N numbers. You have to perform Q operations on the given sequence.

Here are the operations:

  • A v l, add the value v to element with index l.(1<=V<=1000)
  • R a l r, replace all the elements of sequence with index i(l<=i<= r) with a(1<=a<=10^6) .
  • Q l r, print the number of elements with index i(l<=i<=r) and A[i] is a prime number

Note that no number in sequence ever will exceed 10^7.

Input

The first line is a signer integer T which is the number of test cases.

For each test case, The first line contains two numbers N and Q (1 <= N, Q <= 100000) - the number of elements in sequence and the number of queries.

The second line contains N numbers - the elements of the sequence.

In next Q lines, each line contains an operation to be performed on the sequence.

Output

For each test case and each query,print the answer in one line.

Sample Input

1
5 10
1 2 3 4 5
A 3 1
Q 1 3
R 5 2 4
A 1 1
Q 1 1
Q 1 2
Q 1 4
A 3 5
Q 5 5
Q 1 5

Sample Output

2
1
2
4
0
4

来自 <http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3911>

【题意】:

单点修改,区间修改,查询区间素数个数

【解题思路】:

维护线段树,结点内容为:Val-实时数值(只针对单点)  Sum-区间素数个数  Lazy-区间修改后传递给子区间

关键点在于数值和素数标记的同时更新和传递,由于区间更新时没有直接更新到最底层,故单点查询也需要pushdown操作。这里选择将区间更新后的值直接下传,至于素数标记,下传后再进行判断并赋值。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define mid(a,b) ((a+b)>>1)
#define LL int
#define maxn 110000
#define IN freopen("in.txt","r",stdin);
using namespace std; char is_prime[maxn*];
void sieve()
{
int m=(int)sqrt((maxn*)+0.5);
fill(is_prime,is_prime+(maxn*),);
is_prime[]=is_prime[]=;
for(int i=;i<=m;i++) if(is_prime[i])
for(int j=i*i;j<(maxn*);j+=i) is_prime[j]=;
} int n,q;
LL num[maxn];
struct Tree
{
int left,right;
LL sum;
LL val,lazy;
}tree[maxn<<]; /*递归建树*/
void build(int i,int left,int right)
{
tree[i].left=left;
tree[i].right=right;
tree[i].lazy=; if(left==right){
tree[i].val=num[left];
tree[i].sum=(is_prime[num[left]]? :);
return ;
} int mid=mid(left,right); build(i<<,left,mid);
build(i<<|,mid+,right); tree[i].sum=tree[i<<].sum+tree[i<<|].sum;
} /*区间修改,标记下传:每当访问到当前结点的子节点时,下传标记*/
void pushdown(int i)
{
if(tree[i].lazy){
int tmp = (is_prime[tree[i].lazy]? :);
tree[i<<].val=tree[i].lazy;
tree[i<<|].val=tree[i].lazy;
tree[i<<].lazy=tree[i].lazy;
tree[i<<|].lazy=tree[i].lazy;
tree[i<<].sum=(tree[i<<].right-tree[i<<].left+)*tmp;
tree[i<<|].sum=(tree[i<<|].right-tree[i<<|].left+)*tmp;
tree[i].lazy=; /*下传后清零*/
}
} /*区间修改,d为改变量*/
void update(int i,int left,int right,LL d)
{
if(tree[i].left==left&&tree[i].right==right)
{
int tmp = (is_prime[d]? :);
tree[i].sum=(right-left+)*tmp;
tree[i].val=d;
tree[i].lazy=d;
return ;
} pushdown(i); int mid=mid(tree[i].left,tree[i].right); if(right<=mid) update(i<<,left,right,d);
else if(left>mid) update(i<<|,left,right,d);
else
{
update(i<<,left,mid,d);
update(i<<|,mid+,right,d);
} tree[i].sum=tree[i<<].sum+tree[i<<|].sum;
} /*单点修改,d为改变量*/
void update(int i,int x,LL d)
{
if(tree[i].left==tree[i].right){
tree[i].val+=d;
tree[i].sum=(is_prime[tree[i].val]? :);
return;
} pushdown(i);
int mid=mid(tree[i].left,tree[i].right); if(x<=mid) update(i<<,x,d);
else update(i<<|,x,d); tree[i].sum=tree[i<<].sum+tree[i<<|].sum;
} /*区间结果查询*/
LL query(int i,int left,int right)
{
if(tree[i].left==left&&tree[i].right==right)
return tree[i].sum; pushdown(i); int mid=mid(tree[i].left,tree[i].right); if(right<=mid) return query(i<<,left,right);
else if(left>mid) return query(i<<|,left,right);
else return query(i<<,left,mid)+query(i<<|,mid+,right);
} int main(int argc, char const *argv[])
{
//IN; sieve();
int t;scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&q);
for(int i=;i<=n;i++) scanf("%d",&num[i]);
build(,,n); while(q--)
{
char c;
while(c=getchar()){
if(c=='A'||c=='R'||c=='Q') break;
}
if(c=='A'){
int v,l;
scanf("%d %d",&v,&l);
update(,l,v);
}
if(c=='R'){
int a,l,r;
scanf("%d %d %d",&a,&l,&r);
update(,l,r,a);
}
if(c=='Q'){
int l,r;
scanf("%d %d",&l,&r);
printf("%d\n", query(,l,r));
}
}
} return ;
}

ZOJ 3911 Prime Query(线段树)的更多相关文章

  1. 143 - ZOJ Monthly, October 2015 I Prime Query 线段树

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  2. ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  3. ZOJ 5638——Prime Query——————【线段树区间更新,区间查询,单点更新】

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  4. zoj 3511 Cake Robbery(线段树)

    problemCode=3511" target="_blank" style="">题目链接:zoj 3511 Cake Robbery 题目 ...

  5. CF893F:Subtree Minimum Query(线段树合并)

    Description 给你一颗有根树,点有权值,m次询问,每次问你某个点的子树中距离其不超过k的点的权值的最小值.(边权均为1,点权有可能重复,k值每次询问有可能不同,强制在线) Input 第一行 ...

  6. zoj 3325 Machine(线段树)

    题意:0~n-1的数组,初始值为0:执行m个操作,每次操作执行后输出当前值为0的连续段的段数. 操作1: p i j : i~j区间的每个元素值减1 操作2: r i j :i~j区间的每个元素值加1 ...

  7. ZOJ 2301/HDU 1199 线段树+离散化

    给这个题目跪了两天了,想吐简直 发现自己离散化没学好 包括前一个离散化的题目,实际上是错了,我看了sha崽的博客后才知道,POJ那题简直数据弱爆了,本来随便一组就能让我WA掉的,原因在于离散化的时候, ...

  8. ZOJ 2859 二维线段树

    思路:自己写的第二发二维线段树1A.哈哈,看来对二维的push操作比較了解了:可是还没遇到在两个线段树中同一时候进行push操作的,事实上这题我是想在x维和y维同一时候进行push操作的.可是想了好久 ...

  9. query 线段树 + 区间排序

    https://nanti.jisuanke.com/t/41391 这个题目没有很难想,比较暴力,但是要会算复杂度,不会算复杂度,就会觉得自己的算法会超时,实际上不会. 这个题目就是直接暴力求出每一 ...

随机推荐

  1. iOSTab bar

    http://www.apkbus.com/android-130504-1-1.html #import #import "FirstViewController.h"#impo ...

  2. SQL中存储过程和自定义函数的区别

    存储过程:     存储过程可以使得对数据库的管理.以及显示关于数据库及其用户信息的工作容易得多.存储过程是 SQL 语句和可选控制流语句的预编译集合,以一个名称存储并作为一个单元处理.存储过程存储在 ...

  3. string.length()与-1比较为什么会出现匪夷所思的结果

    今天调试程序发现了个匪夷所思的事情,-1与string.length()比较永远是-1大,看下面代码 #include<iostream> #include<string> u ...

  4. 信号量及PV原语

    操作系统中进程互斥和同步的实现的一个最基本的方方是使用信号量和PV原语. 信号量S的物理意义:当S≥0的时候表示,某个资源可以使用的数量,当S<0的时候,其绝对值表示等待某个资源的进程数. 一般 ...

  5. Android平台调用WebService详解

    上篇文章已经对Web Service及其相关知识进行了介绍(Android开发之WebService介绍 ),相信有的朋友已经忍耐不住想试试在Android应用中调用Web Service.本文将通过 ...

  6. HDU 5301 Buildings 建公寓(逻辑,水)

    题意:有一个包含n*m个格子的矩阵,其中有一个格子已经被染黑,现在要拿一些矩形来填充矩阵,不能填充到黑格子,但是每一个填充进去的矩形都必须至少有一条边紧贴在矩阵的边缘(4条边)的.用于填充的矩形其中最 ...

  7. MyEclipse的快捷使用(含关联源码和Doc的方式)

    删除行代码 :在Eclipse中将光标移至待删除的行上,然后按Ctrl+d 组合键 快速导入包 :在Eclipse中将光标移至相应的类上面,按Ctrl+Shift+M 组合键 批量行注释 :Ctrl+ ...

  8. ios第三方开源库

    1.AFNetworking 目前比较推荐的iOS网络请求组件,默认网络请求是异步,通过block回调的方式对返回数据进行处理. 2.FMDB 对sqlite数据库操作进行了封装,demo也比较简单. ...

  9. Android开发 |常见的内存泄漏问题及解决办法

    在Android开发中,内存泄漏是比较常见的问题,有过一些Android编程经历的童鞋应该都遇到过,但为什么会出现内存泄漏呢?内存泄漏又有什么影响呢? 在Android程序开发中,当一个对象已经不需要 ...

  10. Redis,Memcache,mongoDB的区别

    从以下几个维度,对redis.memcache.mongoDB 做了对比,欢迎拍砖 1.性能 都比较高,性能对我们来说应该都不是瓶颈 总体来讲,TPS方面redis和memcache差不多,要大于mo ...