python的random模块
As an example of subclassing, the random module provides the WichmannHill class that implements an alternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier versions of Python, which used the Wichmann-Hill algorithm as the core generator. Note that this Wichmann-Hill generator can no longer be recommended: its period is too short by contemporary standards, and the sequence generated is known to fail some stringent randomness tests. See the references below for a recent variant that repairs these flaws.
Changed in version 2.3: MersenneTwister replaced Wichmann-Hill as the default generator.
The random module also provides the SystemRandom class which uses the system function os.urandom() to generate random numbers from sources provided by the operating system.
Warning
The pseudo-random generators of this module should not be used for security purposes. Use os.urandom() or SystemRandom if you require a cryptographically secure pseudo-random number generator.
Bookkeeping functions:
- random.seed([x])
-
Initialize the basic random number generator. Optional argument x can be any hashable object. If x is omitted or None, current system time is used; current system time is also used to initialize the generator when the module is first imported. If randomness sources are provided by the operating system, they are used instead of the system time (see the os.urandom() function for details on availability).
Changed in version 2.4: formerly, operating system resources were not used.
- random.getstate()
-
Return an object capturing the current internal state of the generator. This object can be passed to setstate() to restore the state.
New in version 2.1.
Changed in version 2.6: State values produced in Python 2.6 cannot be loaded into earlier versions.
- random.setstate(state)
-
state should have been obtained from a previous call to getstate(), and setstate() restores the internal state of the generator to what it was at the time getstate() was called.
New in version 2.1.
- random.jumpahead(n)
-
Change the internal state to one different from and likely far away from the current state. n is a non-negative integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in conjunction with multiple instances of the Random class: setstate() or seed() can be used to force all instances into the same internal state, and then jumpahead() can be used to force the instances’ states far apart.
New in version 2.1.
Changed in version 2.3: Instead of jumping to a specific state, n steps ahead, jumpahead(n) jumps to another state likely to be separated by many steps.
- random.getrandbits(k)
-
Returns a python long int with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.
New in version 2.4.
Functions for integers:
- random.randrange(stop)
- random.randrange(start, stop[, step])
-
Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn’t actually build a range object.
New in version 1.5.2.
- random.randint(a, b)
-
Return a random integer N such that a <= N <= b.
Functions for sequences:
- random.choice(seq)
-
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.
- random.shuffle(x[, random])
-
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function random().
Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.
- random.sample(population, k)
-
Return a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement.
New in version 2.3.
Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.
To choose a sample from a range of integers, use an xrange() object as an argument. This is especially fast and space efficient for sampling from a large population: sample(xrange(10000000), 60).
The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations can be found in any statistics text.
- random.random()
-
Return the next random floating point number in the range [0.0, 1.0).
- random.uniform(a, b)
-
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.
The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().
- random.triangular(low, high, mode)
-
Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.
New in version 2.6.
- random.betavariate(alpha, beta)
-
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.
- random.expovariate(lambd)
-
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.
- random.gammavariate(alpha, beta)
-
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.
The probability distribution function is:
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
- random.gauss(mu, sigma)
-
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.
- random.lognormvariate(mu, sigma)
-
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.
- random.normalvariate(mu, sigma)
-
Normal distribution. mu is the mean, and sigma is the standard deviation.
- random.vonmisesvariate(mu, kappa)
-
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.
- random.paretovariate(alpha)
-
Pareto distribution. alpha is the shape parameter.
- random.weibullvariate(alpha, beta)
-
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.
Alternative Generators:
- class random.WichmannHill([seed])
-
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as Random plus the whseed() method described below. Because this class is implemented in pure Python, it is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is small enough to require care that two independent random sequences do not overlap.
- random.whseed([x])
-
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed() for details. whseed() does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more than about 2**24 distinct internal states in all.
- class random.SystemRandom([seed])
-
Class that uses the os.urandom() function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state and sequences are not reproducible. Accordingly, the seed() and jumpahead() methods have no effect and are ignored. The getstate() and setstate() methods raise NotImplementedError if called.
New in version 2.4.
Examples of basic usage:
>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c' >>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1] >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]
python的random模块的更多相关文章
- 【转】python之random模块分析(一)
[转]python之random模块分析(一) random是python产生伪随机数的模块,随机种子默认为系统时钟.下面分析模块中的方法: 1.random.randint(start,stop): ...
- python的random模块(生成验证码)
python的random模块(生成验证码) random模块常用方法 random.random() #生成0到1之间的随机数,没有参数,float类型 random.randint(1, 3) # ...
- Python中random模块生成随机数详解
Python中random模块生成随机数详解 本文给大家汇总了一下在Python中random模块中最常用的生成随机数的方法,有需要的小伙伴可以参考下 Python中的random模块用于生成随机数. ...
- 你真的用好了Python的random模块吗?
random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结 ...
- Python之random模块
random模块 产生随机数的模块 是Python的标准模块,直接导入即可 import random 1)随机取一个整数,使用.randint()方法: import random print(ra ...
- Python:random模块
近排练习代码时候经常会用到random模块,以防后面忘记还是需要记录一下. 首先导入模块: import random random.random():用于生成一个0到1的随机浮点数: 0 <= ...
- ZH奶酪:【Python】random模块
Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...
- python 之 random 模块、 shutil 模块、shelve模块、 xml模块
6.12 random 模块 print(random.random()) (0,1)----float 大于0且小于1之间的小数 print(random.randint(1,3)) [1,3] 大 ...
- Python time & random模块
time模块 三种时间表示 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp) : 通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的 ...
- Python 之 random模块
Python中的random模块用于生成随机数.1.random.random() #用于生成一个0到1的随机浮点数:0<= n < 1.0>>> random.ran ...
随机推荐
- UVA 11294 Wedding(2-sat)
2-sat.不错的一道题,学到了不少. 需要注意这么几点: 1.题目中描述的是有n对夫妇,其中(n-1)对是来为余下的一对办婚礼的,所以新娘只有一位. 2.2-sat问题是根据必然性建边,比如说A与B ...
- 【DFS,双向】NYOJ-20-吝啬的国度
[题目链接:NYOJ-20] 很巧妙,要好好想想 #include <iostream> #include <stdio.h> #include <vector> ...
- Delphi Waring 的信息
Display PreferencesWarning messages (Delphi)Go Up to Delphi Compiler Directives (List) Index TypeSwi ...
- js基础学习第一天(关于DOM和BOM)一
关于BOM和DOM BOM 下面一幅图很好的说明了BOM和DOM的关系 BOM提供了一些访问窗口对象的一些方法,我们可以用它来移动窗口位置,改变窗口大小,打开新窗口和关闭窗口,弹出对话框,进行导航以及 ...
- Zend Framework 入门(3)—错误处理
undefined 说明脚本中一些对象没有设定 你应在在使用该对象前进行判断 例如: if(typeof(aobject) == "undefined"){ //错误处理 }
- hdu 2818 Building Block(加权并查集)2009 Multi-University Training Contest 1
题意: 一共有30000个箱子,刚开始时都是分开放置的.接下来会有两种操作: 1. M x y,表示把x箱子所在的一摞放到y箱子那一摞上. 2. C y,表示询问y下方有多少个箱子. 输入: 首行输入 ...
- CSS中样式覆盖优先顺序
原文地址:http://www.3lian.com/edu/2014/09-25/168393.html 层叠优先级是: 浏览器缺省 < 外部样式表 < 内部样式表 < 内联样式 其 ...
- mybatis系列-13-resultMap总结
resultType: 作用: 将查询结果按照sql列名pojo属性名一致性映射到pojo中. 场合: 常见一些明细记录的展示,比如用户购买商品明细,将关联查询信息全部展示在页面时,此时可直接使用re ...
- 一起刷LeetCode4-Median of Two Sorted Arrays
实验室太吵了...怎么办啊... ----------------------------------------------------------------------------------- ...
- HDU5744:Keep On Movin(字符串)
题意: 给出t组测试数据,每组给出正整数n表示有n种字符,接下来给出n个数表示该种字符的数目,操作一下,使得可以构造的最小回文串字符数目最大且输出. 分析: 如果每个字符出现次数都是偶数, 那么答案显 ...